DOI QR코드

DOI QR Code

Competitive Adsorption Characteristics of Cupper and Cadmium Using Biochar Derived from Phragmites communis

갈대 biochar의 구리 및 카드뮴 경쟁흡착특성

  • Park, Jong-Hwan (Divison of Applied Life Science (BK21 plus) & Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kim, Seong-Heon (Divison of Applied Life Science (BK21 plus) & Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Shin, Ji-Hyun (Divison of Applied Life Science (BK21 plus) & Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kim, Hong Chul (Department of Pharmaceutical Engineering, Gyeongnam National University of Science and Technology) ;
  • Seo, Dong Cheol (Department of Bio-Environmental Sciences, Sunchon National University)
  • 박종환 (경상대학교 응용생명과학부(Bk21플러스농생명산업차세대인재육성사업단) & 농업생명과학원) ;
  • 김성헌 (경상대학교 응용생명과학부(Bk21플러스농생명산업차세대인재육성사업단) & 농업생명과학원) ;
  • 신지현 (경상대학교 응용생명과학부(Bk21플러스농생명산업차세대인재육성사업단) & 농업생명과학원) ;
  • 김홍출 (경남과학기술대학교 제약공학과) ;
  • 서동철 (순천대학교 생물환경학과)
  • Received : 2015.01.29
  • Accepted : 2015.03.26
  • Published : 2015.03.31

Abstract

BACKGROUND: Heavy metal adsorptionnot only depends on biochar characteristics but also on the nature of the metals involved and on their competitive behavior for biochar adsorption sites. The goal of this study was to investigate the competitive absorption characteristics of Cu and Cd in mono-metal and binary-metal forms by biochar derived from Phragmites communis. METHODS AND RESULTS: Batch and column experiments were conducted to evaluate the competitive adsorption characteristics of the biocharfor Cu and Cd. In the batch experiments, the maximum adsorption capacity of Cd(63 mg/g) by biochar was higher than that for Cu (55 mg/g) in the mono-metal adsorption isotherm. On the other hand, the maximum Cu adsorption capacity (40 mg/g) by biochar was higher than that for Cd(25 mg/g) in the binary-metal adsorption isotherm. Cu was the most retained cations. Cd could be easily exchanged and substituted by Cu. The amounts of adsorbed metals in the column experiments were in the order of Cd (121 mg/g) > Cu (96 mg/g) in mono-metal conditions, and Cu (72 mg/g) > Cd (29 mg/g) in binary-metal conditions. CONCLUSION: Overall, the results demonstrated that competitive adsorption among metals increased the mobility of these metals. Particularly, Cd in binary-metal conditions lost its adsorption capacity most significantly.

Keywords

References

  1. Ahmad, M., Lee, S. S., Dou, X., Mohan, D., Sung, J. K., Yang, J. E., & Ok, Y. S. (2012). Effects of pyrolysis temperature on soybean stover-and peanut shellderived biochar properties and TCE adsorption in water. Bioresource Technology, 118, 536-544. https://doi.org/10.1016/j.biortech.2012.05.042
  2. Antoniadis, V., McKinley, J. D., & Zuhairi, W. Y. (2007). Single-element and competitive metal mobility measured with column infiltration and batch tests. Journal of Environmental Quality, 36(1), 53-60. https://doi.org/10.2134/jeq2006.0134
  3. Bohn, H. L, McNeal, B. L., & O'Connor, G. A. (1979). Soil Chemistry. John Wiley and Sons, New York.
  4. Chen, B., Zhou, D., & Zhu, L. (2008). Transitional adsorption and partition of nonpolar and polar aromaric contaminants by biochars of pine needles with different pyrolytic temperatures. Environmental Science & Technology, 42(14), 5137-5143. https://doi.org/10.1021/es8002684
  5. Chen, X., Chen, G., Chen, L., Chen, Y., Lehmann, J., McBride, M. B., & Hay, A. G. (2011). Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresource Technology, 102(19), 8877-8884. https://doi.org/10.1016/j.biortech.2011.06.078
  6. Choi, I. W., Seo, D.C., Kang, S. W., Lee, S. G., Seo, Y. J., Lim, B. J., Heo, J. S., & Cho, J. S. (2013). Adsorption characteristics of heavy metals using sesame waste biochar. Korean Journal of Soil Science and Fertilizer, 48(1), 8-15. https://doi.org/10.7745/KJSSF.2015.48.1.008
  7. Covelo, E. F., Vega, F. A., & Andrade, M. L. (2007). Simultaneous sorption and desorption of Cd, Cr, Cu, Ni, Pb, and Zn in acid soils: I. Selectivity sequences. Journal of Hazardous Materials, 147(3), 852-861. https://doi.org/10.1016/j.jhazmat.2007.01.123
  8. Ding, W., Dong, X., Ime, I. M., Gao, B., & Ma, L. Q. (2014). Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars. Chemosphere, 105, 68-74. https://doi.org/10.1016/j.chemosphere.2013.12.042
  9. Fontes, M. P. F., & Gomes, P. C. (2003). Simultaneous competitive adsorption of heavy metals by the mineral matrix of tropical soils. Applied Geochemistry, 18(6), 795-804. https://doi.org/10.1016/S0883-2927(02)00188-9
  10. Inyang, M., Gao, B., Yao, Y., Xue, Y., Zimmerman, A. R., Pullammanappallil, P., & Cao, X. (2012). Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresource Technology, 110, 50-56. https://doi.org/10.1016/j.biortech.2012.01.072
  11. Kang, S. W., Seo, D. C., Choi, I. W., Lee, J. B., Lim, B. J., Park, J. H., Kim, K. S., Kim, S. D., Heo, J. S., & Cho, J. S. (2011). Characteristics of nutrient uptake by water plants in free water surface constructed wetlands for treating non-point source pollution. Korean Journal of Environmental Agriculture, 30(3), 304-309. https://doi.org/10.5338/KJEA.2011.30.3.304
  12. Keiluweit, M., Nico, P. S., Johnson, M. G., & Kleber, M. (2010). Dynamicmolecular structure of plant biomassderived black carbon (biochar). Environmental Science & Technology, 44(4), 1247-1253. https://doi.org/10.1021/es9031419
  13. Kim, D. H., & Yim, S. B. (2012). Removal characteristics of heavy metals in acid wastewater by ceramics using natural zeolite and converter slag. Journal of Korean Society of Environmental Engineers, 34(4), 239-246. https://doi.org/10.4491/KSEE.2012.34.4.239
  14. Kim, S. U., Choi, I. W., Seo, D. C., Han, M. H., Kang, B. H., Heo, J. S., Sohn, B. K., & Cho, J. S. (2005). Biosorption of heavy metal in aqueous solution by heavy metal tolerant microorganism isolated from heavy metal contaminated soil. Korean Journal of Environmental Agriculture, 24(4), 379-385. https://doi.org/10.5338/KJEA.2005.24.4.379
  15. Kwon, S. I., Hong, S. C., Kim, M. K., Chae, M. J., Kim, W. I., Lee, J. S., & Kang, K. K. (2012). Contamination assessment of water quality and stream sediments affected by mine drainage in the Sambo mine creek. Korean Journal of Environmental Agriculture, 31(2), 122-128. https://doi.org/10.5338/KJEA.2012.31.2.122
  16. Lee, S. H., & Jang, J. H. (2004). Preliminary study on the development of phosphorus removal process by converter and furnace slags. Journal of the Korean Society of Water and Wastewater, 18(2), 137-144.
  17. Li, Y., Shao, J., Wang, X., Deng, Y., Yang, H., & Chen, H. (2014). Characterization of modified biochars derived from bamboo pyrolysis and their utilization for target component (furfural) adsorption. Energy & Fuels, 28(8), 5119-5127. https://doi.org/10.1021/ef500725c
  18. McBride, M. B., Martinez, C. E., Topp, E., & Evans, L. (2000). Trace metal solubility and speciation in a calcareous soil 18 years after no-till sludge application. Soil Science, 165(8), 646-656. https://doi.org/10.1097/00010694-200008000-00006
  19. Mohapatra, M., & Anand, S. (2010). Synthesis and applications of nano-structure iron oxides/hydroxides-a review. International Journal of Engineering, Science and Technology, 2(8), 127-146.
  20. Na, C. K., Han, M. Y., & Park, H. J. (2011). Applicability of theoretical adsorption models for studies on adsorption properties of adsorbents[I]. Journal of Korean Society of Environmental Engineers, 33(8), 606-616. https://doi.org/10.4491/KSEE.2011.33.8.606
  21. Park, J. H., Seo, D. C., Kim, S. H., Park, M. G., Kang, B. H., Lee, S. W., Lee, S. T., Choi, I. W., & Cho, J. S. (2014). Phosphorus adsorption characteristic of ferronickel and rapid cooling slags. Korean Journal of Environmental Agriculture, 33(3), 176-184.
  22. Saha, U. K., Taniguchi, S., & Sakurai, K. (2002). Simultaneous adsorption of cadmium, zinc, and lead on hydroxyaluminum-and hydroxyaluminosilicatemontmorillonite complexes. Soil Science Society of America Journal, 66(1), 117-128. https://doi.org/10.2136/sssaj2002.0117
  23. Say, R., Denizli, A., & Arca, M. Y. (2001). Biosorption of cadmium (II), lead (II) and copper (II) with the filamentous fungus Phanerochaete chrysosporium. Bioresource Technology, 76(1), 67-70. https://doi.org/10.1016/S0960-8524(00)00071-7
  24. Seo, D. C., Jang, B. I., Jo, I. S., Lim, S. C., Lee, H. J., Cho, J. S., Kim, H. C., & Heo, J. S. (2006a). Selection of optimum water plant in constructed wetland by natural purification method for municipal sewage treatment. Korean Journal of Environmental Agriculture, 25(1), 25-33. https://doi.org/10.5338/KJEA.2006.25.1.025
  25. Seo, D. C., Park, M. R., Kwak, N. W., Hwang, H. N., Lee, H. J., Cho, J. S., & Heo, J. S. (2006b). Optimum depth and volume ratio of aerobic to anaerobic bed for development of small-scale sewage treatment apparatus by natural purification method. Korean Journal of Environmental Agriculture, 25(1), 14-24. https://doi.org/10.5338/KJEA.2006.25.1.014
  26. Seo, D. C., Yu, K., & DeLaune, R. D. (2008). Comparison of monometal and multimetal adsorption in Mississippi River alluvial wetland sediment: batch and column experiments. Chemosphere, 73(11), 1757-1764. https://doi.org/10.1016/j.chemosphere.2008.09.003
  27. Uchimiya, M., Chang, S., & Klasson, K. T. (2011). Screening biochars for heavy metal retention in soil: role of oxygen functional groups. Journal of Hazardous Materials, 190(1), 432-441. https://doi.org/10.1016/j.jhazmat.2011.03.063
  28. Usman, A. R. A. (2008). The relative adsorption selectivities of Pb, Cu, Zn, Cd and Ni by soils developed on shale in New Valley, Egypt. Geoderma, 144(1), 334-343. https://doi.org/10.1016/j.geoderma.2007.12.004
  29. Veeresh, H., Tripathy, S., Chaudhuri, D., Hart, B. R., & Powell, M. A. (2003). Competitive adsorption behavior of selected heavy metals in three soil types of India amended with fly ash and sewage sludge. Environmental Geology, 44(3), 363-370. https://doi.org/10.1007/s00254-003-0776-3
  30. Weber, J., & Miller, C. T. (1989). Organic chemical movement over and through soil.Reactions and movement of organic chemical (ed. Sawhney, B. L., Brown, K.), pp. 305-334. Soil Science Society of America, Madison, WI, USA.
  31. Xu, X., Cao, X., Zhao, L., Wang, H., Yu, H., & Gao, B. (2013). Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environmental Science and Pollution Research, 20(1), 358-368. https://doi.org/10.1007/s11356-012-0873-5
  32. Xue, Y., Gao, B., Yao, Y., Inyang, M., Zhang, M., Zimmerman, A. R., & Ro, K. S. (2012). Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests. Chemical Engineering Journal, 200202, 673-680.
  33. Yan, G., & Viraraghavan, T. (2001). Heavy metal removal in a biosorption column by immobilized M. rouxii biomass. BioresourceTechnology, 78(3), 243-249. https://doi.org/10.1016/S0960-8524(01)00020-7

Cited by

  1. Effect of Sesame Straw Biochar Application on Soil Physics and Nitrous Oxide Emission in Upland Soil vol.49, pp.3, 2016, https://doi.org/10.7745/KJSSF.2016.49.3.259