• Title/Summary/Keyword: Metal Pattern

Search Result 813, Processing Time 0.023 seconds

An Experimental Study on the Metal Surface Temperature and Heat Transfer by Improving Gasoline Engine Cooling Passages (가솔린엔진의 냉각계 유로 변경을 통한 금속면 온도 및 전열에 관한 실험적 연구)

  • 이재헌;류택용;신승용;최재권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • Metal surface temperatures around the combustion chamber in a gasoline engine directly affect thermal durability and performance of the engine. Metal surface temperatures are influenced by many cooling factors such as drilled water passage, deflector, combustion chamber wall thickness, pillar, and coolant flow pattern. The object of this study is to learn how the coolant passages and coolant flow pattern in an engine influence to the engine metal surface temperature at engine full load and speed. From the test result, it is suggested a plan to reinforce the engine stiffness and to reduce the thermal stress simultaneously. Also, approaches are introduced to reduce the thermal load on the engine by adjusting the discharging direction from the water pump and by optimizing the water transfer holes in the cylinder head gasket. These methods and the optimized engine cooling system, which were suggested in this paper, were adapted for an engine in progress to eliminate the exhaust valve seat wear.

Study of contact resistance using the transmission line method (TLM) pattern for metal of electrode (Cr/Ag & Ni) (TLM pattern을 사용한 Cr/Ag 및 Ni 전극에 따른 접합 저항 연구)

  • Hwang, Min-Young;Koo, Ki-Mo;Koo, Sun-Woo;Oh, Gyu-Jin;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.349-349
    • /
    • 2010
  • Great performance of many semiconductor devices requirs the use of low-resistance ohmic contact. Typically, transmission line method (TLM) patterns are used to measure the specific contact resistance between silicon and metal. In this works, we investigate contact resistance for metal dependent (Cr/Ag, Ni) using TLM pattern based on silicon-on-insulator (SOI) wafer. The electrode with Ni linearly increases contact resistance as the pattern distance increase from $15{\mu}m$ to $75{\mu}m$ in accumulation part, but non-linearly increase in inversion part. In additional, the electrode with Cr/Ag linearly increases contact resistance as the pattern distance increase from $15{\mu}m$ to $75{\mu}m$ in inversion part, but non-linearly increase in accumulation part.

  • PDF

Collision Behavior of Molten Metal Droplet by Laser Beam (레이저 빔에 의해 생성된 금속액적의 충돌거동)

  • 김용욱;양영수
    • Laser Solutions
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • A molten metal droplets are deposited onto solid substrate for solid freeform fabrication, Collision dynamic and substrate heat transfer associated with solidification determine the final shape of molten metal droplets. In this study, the experimental model, based on the variational condition with substrate temperature and falling height, was produced reliable optimal data of droplet pattern.

  • PDF

A Study on Pattern Formation of Ultra Definition Display Panel Applying Phosphoric Acid (인산을 적용한 Ultra Definition 디스플레이 패널의 패턴 형성에 관한 연구)

  • Kim, Min-Su;Cho, Ur Ryong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.3
    • /
    • pp.13-19
    • /
    • 2014
  • Phosphoric acid was used as etching agent instead of conventional peroxide - based chemicals for forming pattern of ultra definition display. Etchant was synthesized by mixing etching agent, oxidation agent, buffer solution, and additive into solvent, deionized water. Thicknesses of copper, main metal of ultra definition display, for etching, were 10,000 and $30,000{{\AA}}$. Etch stop of good low skew for proper pattern formation has been occurred at the content ratio of phosphoric acid 60 - 64%, nitric acid 4 - 5%, additive(potassium acetate) 1 - 3%. Buffer solution(acetic acid) decreased the metal contact angle $63.07^{\circ}$ to $42.49^{\circ}$ for benefiting pattern formation. Content variations on four components (phosphoric acid, nitric acid, acetic acid, potassium acetic acid) of the etchant with storage time were within 3 wt% after 24 hrs of etching work.

An Automated Process Planning System for Blanking or Piercing of Irregular Shaped Sheet Metal Product with Bending Processes (굽힘공정을 갖는 불규칙형상 박판제품의 블랭킹 및 피어싱용 공정설계 시스템)

  • Choi, J.C.;Kim, B.M.;Kim, C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.3
    • /
    • pp.18-23
    • /
    • 1998
  • This paper describes a research work of developing a computer-aided design of blanking and piercing for irregular-shaped sheet metal products. An approach to the CAD system is based on the knowledge-based rules. Knowledge for the CAD system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. The system has been written in AutoLISP on the AutoCAD with a personal computer and is composed of four main modules, which are input and shape treatment, flat pattern layout, production feasibility check, and strip layout module. Based on knowledge-based rules, the system is designed by considering several factors, such as radius and angle of bend. material and thickness of product, complexities of blank geometry and punch profile, and availability of press. This system is capable of unfolding a formed sheet metal part to give flat pattern and automatically account for the adjustment of bend allowances to match tooling requirements by checking the dimensions and relationships of parts of the folded product. Also this system can carry out a process planning which is obtained from results of irregular shape of product that was successful in production feasibility check module according to flat pattern layout and generate strip layout drawing in graphic forms. The developed system provides its efficiency for flat pattern layout, and strip layout for the irregularly shaped sheet metal products.

  • PDF

The Effect of Energy-absorbing layers on Micro-patterning of Magnetic Metal Films using Nd:YAG Laser (Nd:YAG Laser를 이용한 자성금속막의 패턴 식각에 있어서 에너지 흡수층이 미치는 영향)

  • 이주현;채상훈;서영준;송재성;민복기;안승준
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.6
    • /
    • pp.538-544
    • /
    • 2000
  • The laser patterning of sputter-deposited CoNdZr/Cu/CoNbZr multi-layered films had been tried using Nd:YAG laser. However generally it is very difficult to remove metal films because of their high reflectance of the laser on the surfaces. As a counterproposal for this problem authors for the first time tried to deposit energy-absorbing layers on the metal films and then irradiated the laser on the surfaces of energy-absorbing layers. Here the energy-absorbing layers consisted of laser energy-absorbing fine powders and binding polymers. Three kinds of powders for the energy-absorbing layers had been used to see the difference in the pattern formation with the degree of laser energy absorption. They were electrically conductive silver powders insulating BaTiO$_3$powder and semiconducting carbon powder. Remarkable difference in width of the formed pattern and the roughness of pattern edge were observed with the characteristic of the powder for the energy-absorbing layer. The pattern width using carbon paste was about three times larger than that using BaTiO$_3$paste. It was observed that the energy-absorbing layer with carbon was the most effective on this micro-patterning.

  • PDF

Mechanical Behavior of Sandwich Panels with Quasi-Kagome Truss Core Fabricated from Expanded Metals (확장금속망을 이용하여 제작된 준카고메 트러스 중간층을 갖는 샌드위치 판재의 기계적 거동)

  • Lim, Chae-Hong;Lim, Ji-Hyun;Jung, Jae-Gyu;Lim, Jong-Dae;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1078-1085
    • /
    • 2006
  • Many studies have been focused on how to manufacture ultra light metal structures and optimize them. In this study, we introduced a new idea to make sandwich panels with quasi-Kagome truss cores. First, metal sheets with a peculiar pattern of slits were expanded to be meshes, they are crimped into a triangular wave pattern, and then one third of struts were bent reversely to be quasi-Kagome trusses. Finally, two face sheets were bonded on the upper and the lower sides. The bending strength was estimated through elementary mechanics for the sandwich specimens with two kinds of face sheet the results of estimation were compared with the those of finite element analyses and experiments.

A study on the development of pattern design for the modernization of the plant pattern in the Joseon dynasty (조선시대 식물문양의 현대화를 위한 패턴디자인 개발 연구)

  • Rhee, Myung Soog;Cho, Woo Hyun
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.21 no.1
    • /
    • pp.163-180
    • /
    • 2019
  • A pattern is a symbolic mark of the psychological expression and ornamental desire of the human interior. In particular, plant patterns, from ancient times to modern times, express beauty across both the east and the west. The Joseon dynasty had a strong national will, and it was a time when the symbolism of Korea was established. Plant patterns were decorative and symbolic, filled with meaning in both the textile and craft sectors. This study looked at the frequency and figurative characteristics of the types of plant patterns in textiles, ceramics, woodworking, and metal craftsmanship of the Joseon dynasty. In addition, pattern designs were developed by extracting unit patterns to maintain the original shape, and by adding, magnifying, reducing, and superimposing flat steps and employing the four-fold sequence. The data collected was 826 examples in textiles and crafts, and 34 species of plants were analyzed as follows. In general, the flower patterns preferred soft flowers, flowers, apricot, and peony patterns, and fruit patterns emerged as decorative designs for pottery and woodwork from the 17th century, featuring pomegranates, grapes, fluorines, peaches, and walnut floss. Textiles and woodwork were arranged with many circular designs, while pottery and metal crafts were filled in many ways. Expressive types appeared to be the same as stylistic types for textiles and ceramics, and the construction types were the same in pottery and metal crafts. As such, it was found that even in the different areas of the sculpture, the same aesthetic values were reflected in the common figurative features today. Therefore, in this study, we developed a unique and competitive pattern design that accommodates the modern times and the Joseon dynasty. This development is expected to contribute not only to the development of cultural and tourism products in the future, but also to the tourism industry induced by the Korean wave.

Metallizations and Electrical Characterizations of Low Resistivity Electrodes(Al, Ta, Cr) in the Amorphous Silicon Thin Film Transistor (비정질 실리콘 박막 트랜지스터 소자 특성 향상을 위한 저 저항 금속 박막 전극의 형성 및 전기적 저항 특성 평가)

  • Kim, Hyung-Taek
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.05a
    • /
    • pp.96-99
    • /
    • 1993
  • Electrical properties of the Thin Film Transistor(TFT) electrode metal films were investigated through the Test Elements Group(TEG) experiment. The main purpose of this investigation was to characterize the electrical resistance properties of patterned metal films with respect to the variations of film thickness and TEG metal line width. Aluminum(Al), Tantalum(Ta) and Chromium(Cr) that are currently used as TFT electrode films were selected as the probed metal films. To date, no work in the electrical characterizations of patterned electrodes of a-Si TFT was accomplished. Bulk resistance$(R_b)$, sheet resistance$(R_s)$, and resistivities($\rho$) of TEG patterned metal lines were obtained. Electrical continuity test of metal film lines was also performed in order to investigate the stability of metallization process. Almost uniform-linear variations of the electrical properties with respect to the metal line displacements was also observed.

  • PDF

Investigation into Characteristics of Bending Stiffness and Failure for ISB Panel (ISB 판넬의 굽힘강성 및 파손특성에 관한 연구)

  • Ahn Dong-Gyu;Lee Sang-Hoon;Kim Min-Su;Han Gil-Young;Jung Chang-Gyun;Yang Bong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.162-172
    • /
    • 2005
  • The objective of this research works is to investigate into characteristics of bending stiffness and failure for the ISB ultra-lightweight panel with internally structured material. The expanded metal with a crimped pyramid shape and woven metal are employed as an internally structured material. Through three-points bending test, the force-displacement curve and failure shape are obtained to examine the deformation pattern, characteristic data, such as maximum load, displacement at maximum load, etc, and failure pattern of the ISB panel. In addition, the influence of design parameters fur ISB panel on the specific stiffness, the specific stiffness per unit width, failure mode and failure map has been found. Finally, it has been shown that ISB containing expand metal with the crimped pyramidal shape is prefer to that containing woven metal from the view point of optimal design for ISB panel.