• 제목/요약/키워드: Metal Loss

검색결과 818건 처리시간 0.025초

이중 금속선 곡선형 도파로에서의 전파특성에 관한 연구 (A Study on the Propagation Characteristics in Double Metal Strip Waveguides)

  • 이상준;김상인;송석호
    • 한국광학회지
    • /
    • 제18권3호
    • /
    • pp.226-231
    • /
    • 2007
  • 본 논문에서는 이중 금속선으로 이루어진 다양한 곡선형 도파로를 고려하고 이 구조들에서 전파하는 모드의 특성을 수치해석적으로 분석하였다. 이중 금속선들 간의 간격과 내부 유전체의 굴절률 변화에 따라 곡선형 도파로의 최적 반경과 최소손실의 경향을 조사하였으며, 그 결과 이중 금속선 구조가 단일 금속선 구조보다 전파특성이 좋은 최적 구조가 존재함을 확인하였다.

Experimental Estimation on Magnetic Friction of Superconductor Flywheel Energy Storage System

  • Lee, Jeong-Phil;Han, Sang-Chul;Park, Byeong-Choel
    • Journal of Magnetics
    • /
    • 제16권2호
    • /
    • pp.124-128
    • /
    • 2011
  • This study estimated experimentally the loss distribution caused by magnetic friction in magnetic parts of a superconductor flywheel energy storage system (SFES) to obtain information for the design of high efficiency SFES. Through the spin down experiment using the manufactured vertical shaft type SFES with a journal type superconductor magnetic bearing (SMB), the coefficients of friction by the SMB, the stator core of permanent magnet synchronous motor/generator (PMSM/G), and the leakage flux of the metal parts were calculated. The coefficients of friction by the stator core of PMSM/G in case of using Si-steel and an amorphous core were calculated. The energy loss by magnetic friction in the stator core of PMSM/G was much larger than that in the other parts. The level of friction loss could be reduced dramatically using an amorphous core. Energy loss by the leakage magnetic field was small. On the other hand, the energy loss could be increased under other conditions according to the type of metal nearby the leakage magnetic fields. In manufactured SFES, the rotational loss by the amorphous core was approximately 2 times the loss of the superconductor and leakage. Moreover, the rotational loss by the Si-steel core is approximately 3~3.5 times the loss of superconductor and leakage.

The Effects of Substrate, Metal-line, and Surface Material on the Performance of RFID Tag Antenna

  • Cho, Chi-Hyun;Choo, Ho-Sung;Park, Ik-Mo
    • Journal of electromagnetic engineering and science
    • /
    • 제7권1호
    • /
    • pp.47-52
    • /
    • 2007
  • We investigated the effects of substrate, metal-line, and surface material on the performance of radio frequency identification(RFID) tag antenna using a tag antenna with a meander line radiator and T-matching network. The results showed that readability of the tag antenna with a thin high-loss substrate could be increased so that it was similar to that of a low-loss substrate if the substrate was very thin. The readability of the tag antenna decreased significantly when the metal line was thinner than the skin depth. The readability of the tag also decreased drastically when the tag was attached to high-permittivity high-loss target objects.

Nano-scale Inter-lamellar Structure of Metal Powder Composites for High Performance Power Inductor and Motor Applications

  • Kim, Hakkwan;An, Sung Yong
    • Journal of Magnetics
    • /
    • 제20권2호
    • /
    • pp.138-147
    • /
    • 2015
  • The unique nano-scale inter-lamellar microstructure and unparalleled heat treatment process give our developed metal powder composite its outstanding magnetic property for power inductor & motor applications. Compared to the conventional polycrystalline Fe or amorphous Fe-Cr-Si-B alloys, our unique designed inter-lamellar microstructure strongly decreases the intra-particle eddy current loss at high frequencies by blocking the mutual eddy currents. The combination of optimum permeability, magnetic flux and extremely low core loss makes this powder composite suitable for high frequency applications well above 10 MHz. Moreover, it can be also possible to SMC core for high speed motor applications in order to increase the motor efficiency by decreasing the core loss.

몇 개의 전이금속 이온과 고분자와 고분자 Complex의 합성과 특성연구 (Synthesis and Characterization of Polymer and Polymer Complex with Some Transition Metal Ions)

  • Badr, S.K.;Mohamed, T.Y.
    • 대한화학회지
    • /
    • 제54권1호
    • /
    • pp.43-48
    • /
    • 2010
  • p-페닐렌 디아민과 maleic anhydride, 아세틸 아세톤과 커플된 O-아미노 페놀의 아조화합물으로 부터 폴리이미드가 만들어졌다. 합성된 폴리이미드(PA)는 DMF용매 속에 다른 몰비율로 녹아있는 $Co^{+2},\;Cr^{+2},\;Ni^{+2},\;Cu^{+2},\;Zn^{+2},\;Cd^{+2}$ and $Fe^{+3}$ 를 포함하는 전이금속이온들의 금속염들과 함께 환류되었다. 이 complex들은 원소분석과 열분석, IR, $^1H$ NMR으로 구조분석, 특성 연구되었다.

High Performance Wilkinson Power Divider Using Integrated Passive Technology on SI-GaAs Substrate

  • Wang, Cong;Qian, Cheng;Li, De-Zhong;Huang, Wen-Cheng;Kim, Nam-Young
    • Journal of electromagnetic engineering and science
    • /
    • 제8권3호
    • /
    • pp.129-133
    • /
    • 2008
  • An integrated passive device(IPD) technology by semi-insulating(SI)-GaAs-based fabrication has been developed to meet the ever increasing needs of size and cost reduction in wireless applications. This technology includes reliable NiCr thin film resistor, thick plated Cu/Au metal process to reduce resistive loss, high breakdown voltage metal-insulator-metal(MIM) capacitor due to a thinner dielectric thickness, lowest parasitic effect by multi air-bridged metal layers, air-bridges for inductor underpass and capacitor pick-up, and low chip cost by only 6 process layers. This paper presents the Wilkinson power divider with excellent performance for digital cellular system(DCS). The insertion loss of this power divider is - 0.43 dB and the port isolation greater than - 22 dB over the entire band. Return loss in input and output ports are - 23.4 dB and - 25.4 dB, respectively. The Wilkinson power divider based on SI-GaAs substrates is designed within die size of $1.42\;mm^2$.

Analysis of heat-loss mechanisms with various gases associated with the surface emissivity of a metal containment vessel in a water-cooled small modular reactor

  • Geon Hyeong Lee;Jae Hyung Park;Beomjin Jeong;Sung Joong Kim
    • Nuclear Engineering and Technology
    • /
    • 제56권8호
    • /
    • pp.3043-3066
    • /
    • 2024
  • In various small modular reactor (SMR) designs currently under development, the conventional concrete containment building has been replaced by a metal containment vessel (MCV). In these systems, the gap between the MCV and the reactor pressure vessel is filled with gas or vacuumed weakly, effectively suppressing conduction and convection heat transfer. However, thermal radiation remains the major mode of heat transfer during normal operation. The objective of this study was to investigate the heat-transfer mechanisms in integral pressurized water reactor (IPWR)-type SMRs under various gas-filled conditions using computational fluid dynamics. The use of thermal radiation shielding (TRS) with a much lower emissivity material than the MCV surface was also evaluated. The results showed that thermal radiation was always the dominant contributor to heat loss (48-97%), while the conjugated effects of the gas candidates on natural convection and thermal radiation varied depending on their thermal and radiative properties, including absorption coefficient. The TRS showed an excellent insulation performance, with a reduction in the total heat loss of 56-70% under the relatively low temperatures of the IPWR system, except for carbon dioxide (13%). Consequently, TRS can be utilized to enhance the thermal efficiency of SMR designs by suppressing the heat loss through the MCV.

CFD ANALYSIS OF HEAVY LIQUID METAL FLOW IN THE CORE OF THE HELIOS LOOP

  • Batta, A.;Cho, Jae-Hyun;Class, A.G.;Hwang, Il-Soon
    • Nuclear Engineering and Technology
    • /
    • 제42권6호
    • /
    • pp.656-661
    • /
    • 2010
  • Lead-alloys are very attractive nuclear coolants due to their thermo-hydraulic, chemical, and neutronic properties. By utilizing the HELIOS (Heavy Eutectic liquid metal Loop for Integral test of Operability and Safety of PEACER$^2$) facility, a thermal hydraulic benchmarking study has been conducted for the prediction of pressure loss in lead-alloy cooled advanced nuclear energy systems (LACANES). The loop has several complex components that cannot be readily characterized with available pressure loss correlations. Among these components is the core, composed of a vessel, a barrel, heaters separated by complex spacers, and the plenum. Due to the complex shape of the core, its pressure loss is comparable to that of the rest of the loop. Detailed CFD simulations employing different CFD codes are used to determine the pressure loss, and it is found that the spacers contribute to nearly 90 percent of the total pressure loss. In the system codes, spacers are usually accounted for; however, due to the lack of correlations for the exact spacer geometry, the accuracy of models relies strongly on assumptions used for modeling spacers. CFD can be used to determine an appropriate correlation. However, application of CFD also requires careful choice of turbulence models and numerical meshes, which are selected based on extensive experience with liquid metal flow simulations for the KALLA lab. In this paper consistent results of CFX and Star-CD are obtained and compared to measured data. Measured data of the pressure loss of the core are obtained with a differential pressure transducer located between the core inlet and outlet at a flow rate of 13.57kg/s.

메탈 할라이드 램프 외관의 최적 봉착조건에 관한 연구 (A Study for Optimal filling Condition in Outer Enclosure of Metal Halide Lamp)

  • 지철근;이성진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 정기총회 및 창립40주년기념 학술대회 학회본부
    • /
    • pp.296-299
    • /
    • 1987
  • The purpose of this paper is to increase the lamp efficacy by filling the optimal Nitrogen gas pressure in the outer enclosure of metal halide lamp. This study presents a new model of Langmuir in the outer enclosure of discharge lamp. In this paper, in the first place, the diameter of Langmuir sheath and the total gab loss were calculated. Secondly, the each gas loss was computed if the arbitrary gas pressure is filled, With the calculated data, flash over which affects the lamp efficacy, lamp life and color rendering was considered. In case of the established discharge lamp, the gab pressure has been filled by experience only roughly. The gas loss is converted into the radiation output. Therefore, the lamp efficacy is improved by reducing the gas loss.

  • PDF

Viability Loss of Bacteriophage MS2 Exposed to Bronze Alloy Yugi

  • Hwang, Ji-Yeon;Ryu, Tae-Hwa;Lee, Young-Duck;Park, Jong-Hyun
    • Food Science and Biotechnology
    • /
    • 제18권4호
    • /
    • pp.1022-1026
    • /
    • 2009
  • Cross contamination of foodborne virus via food utensils can be an important route of virus propagation. Bacteriophage MS2 was used as a surrogate for norovirus. The viability loss of bacteriophage MS2 attached to 4 kinds of metal surfaces was investigated at different temperatures and relative humidities (RH). The rate of viability loss was higher at $22^{\circ}C$ than at $10^{\circ}C$ and was higher at 75% RH than at 40% RH. The viability loss of the virus attached to copper or bronze surface was faster than on stainless steel or tin surface. Also the beef juice applied with the virus inoculum on the metal surfaces lowered the rate of viability loss. Although bronze was not as effective as copper in resulting the viability loss, it has been extensively used as a traditional Korean kitchen utensil and could be used more widely to decrease the viral poisoning at food processing environment and hospitals.