• Title/Summary/Keyword: Metal Ions

Search Result 2,102, Processing Time 0.031 seconds

Separation of Alkali and Alkaline Earth Metal Ions Using Novel DBPDA Ion Exchanger and Its Ion Exchange Properties (새로운 DBPDA 이온교환체를 사용한 알칼리 및 알칼리 토금속 이온들의 분리와 그의 이온교환 성질)

  • Kim, Dong Won;Kim, Chang Suk;Choi, Ki Young;Jeon, Young Shin
    • Analytical Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.261-265
    • /
    • 1993
  • The ion exchange capacity of DBPDA ion exchanger, {(4,5):(13,14)-dibenzo-6, 9, 12-trioxa-3, 15, 21-triazabicyclo [15.3.1] heneicosa-1(21), 17, 19-triene-2, 16-dione : DBPDA ion exchanger} was 4.2meq/g. The distribution coefficients of alkali and alkaline earth metal ions in the various concentrations of hydrochloric acid were determined using DBPDA ion exchanger. Also alkali and alkaline earth metal ions were separated using DBPDA ion exchanger. From these results the effect of pH of solution and ionic radii of the metal ions on the distribution coefficients of alkali and alkaline earth metal ions were discussed.

  • PDF

Separation of Hg(II) by using the poly-NTOE(1, 12-diaza-3, 4:9, 10-dibenzo-5, 8-dioxacyclopentadeca-1, 12-ylene-2, 7-dihydroxyoctamethylene) in Liquid Chromatography (액체 크로마토그래피에서 Poly-NTOE(1, 12-diaza-3, 4:9, 10-dibenzo-5, 8-dioxacyclopentadeca-1, 12-ylene-2, 7-dihydroxyoctamethylene)를 이용한 Hg(II)의 분리)

  • Kim, Hae-Joong;Shin, Young-Kook;Kim, Si-Joong
    • Analytical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.259-264
    • /
    • 1995
  • The separation efficiency of metal ions by using the poly-NTOE(1, 12-diaza-3, 4:9, 10-dibenzo-5, 8-dioxacyclopentadeca-1, 12-ylene-2, 7-dihydroxyoctamethylene) has been determined by column chromatography in aqueous solution. Binding constants and separation factors for several poly-NTOE interactions were measured in aqueous solution. The order of these binding constants and separation factors with metal ions were Co(II)Zn(II) for the transition metal ions and Cd(II)

  • PDF

Study of Complexes of C2- and C6-dihydroceramides with Transition Metal Ions Using Electrospray Ionization Tandem Mass Spectrometry (ESI-MS/MS)

  • Lim, Jin-Yi;Kumar, Avvaru Praveen;Kim, Chang-Dae;Ahn, Chul-Jin;Yoo, Young-Jae;Lee, Yong-Ill
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.397-401
    • /
    • 2009
  • The complexes of $C_2-\;and\;C_6$-dihydroceramides with transition metal ions have been investigated by using Electrospray ionization-tandem mass spectrometry (ESI-MS/MS). The formation and fragmentation pathways of several doubly charged cluster ions as well as singly charged cluster ions of $C_2-\;and\;C_6$-dihydroceramides with transition metal ions have studied by ESI-MS/MS in the positive mode. Under ESI conditions, dihydroceramides form singly and doubly charged complexes with transition metal ions $(Mn^{2+},\;Fe^{2+},\;Co^{2+},\;Ni^{2+},\;and\;Zn^{2+}\;except\;Cu^{2+})$ with the compositions of $[DHCer+M+2H^2O-H]^+,\;[2DHCer+M+2H2O-H]^+,\;[3DHCer+M+2H2O-H]^+,\;[2DHCer+M]^{2+},\;[3DHCer+M]^{2+},\;[4DHCer+M]^{2+},\;[5DHCer+M]^{2+},\;and\;[6DHCer+M]^{2+}\;(DHCer\;=\;C_2-\;or\;C_6$-dihydroceramide, M = transition metal ion). The different complexation behavior of copper is responsible for relatively lower affinity of dihydroceramides to copper compared to those of other transition metals. It is also found that in the mass spectrum of the dihydroceramide complexes with copper(II), [2DHCer+Cu-H]$^+$ was observed with considerable intensity as well as [2DHCer+Cu+2$H_2O-H]^+$ due to its different geometry from those of other metals.

Glutamic Acid-Grafted Metal-Organic Framework: Preparation, Characterization, and Heavy Metal Ion Removal Studies

  • Phani Brahma Somayajulu Rallapalli;Jeong Hyub Ha
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.556-565
    • /
    • 2023
  • Fast industrial and agricultural expansion result in the production of heavy metal ions (HMIs). These are exceedingly hazardous to both humans and the environment, and the necessity to eliminate them from aqueous systems prompts the development of novel materials. In the present study, a UIO-66 (COOH)2 metal-organic framework (MOF) containing free carboxylic acid groups was post-synthetically modified with L-glutamic acid via the solid-solid reaction route. Pristine and glutamic acid-treated MOF materials were characterized in detail using several physicochemical techniques. Single-ion batch adsorption studies of Pb(II) and Hg(II) ions were carried out using pristine as well as amino acid-modified MOFs. We further examined parameters that influence removal efficiency, such as the initial concentration and contact time. The bare MOF had a higher ion adsorption capacity for Pb(II) (261.87 mg/g) than for Hg(II) ions (10.54 mg/g) at an initial concentration of 150 ppm. In contrast, an increased Hg(II) ion adsorption capacity was observed for the glutamic acid-modified MOF (80.6 mg/g) as compared to the bare MOF. The Hg(II) ion adsorption capacity increased by almost 87% after modification with glutamic acid. Fitting results of isotherm and kinetic data models indicated that the adsorption of Pb(II) on both pristine and glutamic acid-modified MOFs was due to surface complexation of Pb(II) ions with available -COOH groups (pyromellitic acid). Adsorption of Hg(II) on the glutamic acid-modified MOF was attributed to chelation, in which glutamic acid grafted onto the surface of the MOF formed chelates with Hg(II) ions.

Heavy Metal Son Exchange Reaction in Boron-Rich Containing Plants (다량의 붕소원소를 함유하는 식물의 중금속 이온 교환반응)

  • 배계선;성대동
    • Journal of Environmental Science International
    • /
    • v.5 no.6
    • /
    • pp.757-762
    • /
    • 1996
  • The removal effectiveness of various heavy metal ions in boron-rich containing plants has been studied by means of spectroscopic and pH methods. Treatment of the boron-rich containing sample which was collected from cherry and root of cabbage to heavy metal ions is resulted in that an excellent removal effect shows in the case of large ionic size of heavy metal. Stability constants are depended on the variation of pH.

  • PDF

Isothermal and Kinetic Studies of the Adsorption Removal of Pb(II), Cu(II), and Ni(II) Ions from Aqueous Solutions using Modified Chara Sp. Algae

  • Kalash, Khairi R.;Alalwan, Hayder A.;Al-Furaiji, Mustafa H.;Alminshid, Alaa. H.;Waisi, Basma I.
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.301-306
    • /
    • 2020
  • We investigated the individual biosorption removal of lead, copper, and nickel ions from aqueous solutions using Chara sp. algae powder in a batch mode. The impact of several parameters, such as initial concentration of the metal ions, contacting time, sorbent dose, and pH on the removal efficiency, was investigated. The maximum removal efficiency at optimum conditions was found to be 98% for Pb(II) at pH = 4, 90% for Cu(II) at pH = 5, and 80% for Ni(II) at pH = 5. The isotherm study was done under the optimum conditions for each metal by applying the experimental results onto the well-known Freundlich and Langmuir models. The results show that the Langmuir is better in describing the isotherm adsorption of Pb(II) and Ni(II), while the Freundlich is a better fit in the case of Cu(II). Similarly, a kinetic study was performed by using the pseudo-first and second-order equations. Our results show that the pseudo-second-order is better in representing the kinetic adsorption of the three metal ions.

The Recovery Performance of Co, Ni, and Cu Ions Using Zeolites Synthesized from Inorganic Solid Wastes (무기물계 폐기물로 합성한 제올라이트의 코발트, 니켈, 구리 이온의 회수 성능)

  • Lee, ChangHan
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.5
    • /
    • pp.723-728
    • /
    • 2012
  • In this study, zeolites were synthesized by a fusion and a hydrothermal methods using a coal fly ash and a waste catalyst. The recovery performance of metal ions on the structure property of synthetic zeolites was evaluated as comparing the adsorption kinetics (Lagergen 2nd order model) and isotherm (Langmuir model) of $Co^{2+},\;Ni^{2+}$, and $Cu^{2+}$ ions. The synthetic zeolites (Z-C1 and Z-W5) were similarly assigned to XRD peaks in a reagent grade Na-A zeolite (Z-WK : $Na_{12}Al_{12}Si_{12}O_{48}\;27.4H_2O$). Adsorption rates of Z-W5 and Z-C1 were in the order of $Cu^{2+}\;>\;Co^{2+}\;>\;Ni^{2+}\;and\;Ni^{2+}\;>\;Cu^{2+}\;>\;Co^{2+}$, respectively. They had influenced upon structure properties of zeolite. Selectivities of metal ions and maximum equilibrium adsorption capacities, $q_{max}$, in Z-C1 and Z-W5 were in the order of $Ni^{2+}$ (127.9 mg/g) > $Cu^{2+}$ (94.7 mg/g) > $Co^{2+}$ (82.6 mg/g) and $Cu^{2+}$ (141.3 mg/g) > $Co^{2+}$ (122.2 mg/g) > $Ni^{2+}$ (87.6 mg/g), respectively. The results show that the synthetic zeolites, Z-C1 and Z-W5, are able to recover metal ions selectively in wastewater.

Selective Fe2+ Ion Recognition Using a Fluorescent Pyridinyl-benzoimidazole-derived Ionophore

  • Lee, Jeong Ah;Eom, Geun Hee;Park, Hyun Min;Lee, Ju Hoon;Song, Hyesun;Hong, Chang Seop;Yoon, Sungho;Kim, Cheal
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3625-3628
    • /
    • 2012
  • Fluorescent organic molecules that respond to changes in the $Fe^{2+}$ concentration with selectivity to other abundant di-valent metal ions will offer the ability to understand the dynamic fluctuations of the $Fe^{2+}$ ion in interesting media. The use of 6-Br-ppmbi, derived from 2-pyridin-2-yl-benzimidazole, for metal ion-selective fluorescence recognition was investigated. Screening of the main group and transition metal ions showed exclusive selectivity for $Fe^{2+}$ ions even in the presence of competing metal ions. In addition, the requirement for low concentrations of probe molecules to detect certain amounts of $Fe^{2+}$ ions make this sensor unique compared to previously reported $Fe^{2+}$ ion sensors.

Sorption of Ni(II), Cu(II) and Fe(III) ions from Aqueous Solutions Using Activated Carbon (활성탄소를 이용한 수용액으로부터의 Ni(II), Cu(II) 그리고 Fe(III) 이온의 흡착)

  • Hanafi, H.A.;Hassan, H.S.
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.5
    • /
    • pp.533-540
    • /
    • 2010
  • An activated carbon was tested for its ability to remove transition metal ions from aqueous solutions. Physical, chemical and liquid-phase adsorption characterizations of the carbon were done following standard procedures. Studies on the removal of Ni(II), Cu(II) and Fe(III) ions were attempted by varying adsorbate dose, pH of the metal ion solution and time in batch mode. The equilibrium adsorption data were fitted with Freundlich and Langmuir and the isotherm constants were evaluated, equilibrium time of the different three metal ions were determined. pH was found to have a significant role to play in the adsorption. The processes were endothermic and the thermodynamic parameters were evaluated. Desorption studies indicate that ion-exchange mechanism is operating.

Grain Growth Behavior of (K0.5Na0.5)NbO3 Ceramics Doped with Alkaline Earth Metal Ions

  • Il-Ryeol Yoo;Seong-Hui Choi;Kyung-Hoon Cho
    • Korean Journal of Materials Research
    • /
    • v.33 no.4
    • /
    • pp.135-141
    • /
    • 2023
  • The volatilization of alkali ions in (K,Na)NbO3 (KNN) ceramics was inhibited by doping them with alkaline earth metal ions. In addition, the grain growth behavior changed significantly as the sintering duration (ts) increased. At 1,100 ℃, the volatilization of alkali ions in KNN ceramics was more suppressed when doped with alkaline earth metal ions with smaller ionic size. A Ca2+-doped KNN specimen with the least alkali ion volatilization exhibited a microstructure in which grain growth was completely suppressed, even under long-term sintering for ts = 30 h. The grain growth in Sr2+-doped and Ba2+-doped KNN specimens was suppressed until ts = 10 h. However, at ts = 30 h, a heterogeneous microstructure with abnormal grains and small-sized matrix grains was observed. The size and number of abnormal grains and size distribution of matrix grains were considerably different between the Sr2+-doped and Ba2+-doped specimens. This microstructural diversity in KNN ceramics could be explained in terms of the crystal growth driving force required for two-dimensional nucleation, which was directly related to the number of vacancies in the material.