DOI QR코드

DOI QR Code

Selective Fe2+ Ion Recognition Using a Fluorescent Pyridinyl-benzoimidazole-derived Ionophore

  • Lee, Jeong Ah (Department of Fine Chemistry, Seoul National University of Science & Technology) ;
  • Eom, Geun Hee (Department of Fine Chemistry, Seoul National University of Science & Technology) ;
  • Park, Hyun Min (Department of Fine Chemistry, Seoul National University of Science & Technology) ;
  • Lee, Ju Hoon (Department of Fine Chemistry, Seoul National University of Science & Technology) ;
  • Song, Hyesun (Department of Bio & Nano Chemistry, Kookmin University) ;
  • Hong, Chang Seop (Department of Chemistry, Korea University) ;
  • Yoon, Sungho (Department of Bio & Nano Chemistry, Kookmin University) ;
  • Kim, Cheal (Department of Fine Chemistry, Seoul National University of Science & Technology)
  • Received : 2012.04.13
  • Accepted : 2012.08.08
  • Published : 2012.11.20

Abstract

Fluorescent organic molecules that respond to changes in the $Fe^{2+}$ concentration with selectivity to other abundant di-valent metal ions will offer the ability to understand the dynamic fluctuations of the $Fe^{2+}$ ion in interesting media. The use of 6-Br-ppmbi, derived from 2-pyridin-2-yl-benzimidazole, for metal ion-selective fluorescence recognition was investigated. Screening of the main group and transition metal ions showed exclusive selectivity for $Fe^{2+}$ ions even in the presence of competing metal ions. In addition, the requirement for low concentrations of probe molecules to detect certain amounts of $Fe^{2+}$ ions make this sensor unique compared to previously reported $Fe^{2+}$ ion sensors.

Keywords

References

  1. Domaille, D. W.; Que, E. L.; Chang, C. J. Nat. Chem. Biol. 2008, 4, 168. https://doi.org/10.1038/nchembio.69
  2. Nolan, E. M.; Jaworski, J.; Okamoto, K.-I.; Hayashi, Y.; Sheng, M.; Lippard, S. J. J. Am. Chem. Soc. 2005, 127, 16812. https://doi.org/10.1021/ja052184t
  3. Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515. https://doi.org/10.1021/cr960386p
  4. Fages, F.; Desvergne, J.-P.; Bouas-Laurent, H.; Marsau, P.; Lehn, J.-M.; Kotzyba-Hilbert, F.; Albrecht-Gary, A.-M.; Joubbeh, M. A. J. Am. Chem. Soc. 1989, 111, 8672. https://doi.org/10.1021/ja00205a017
  5. Zhang, J. F.; Zhou, Y.; Yoon, J.; Kim, J. S. Chem. Soc. Rev. 2011, 40, 3416. https://doi.org/10.1039/c1cs15028f
  6. Wang, F.; Nandhakumar, R.; Moon, J. H.; Kim, K. M.; Lee, J. Y.; Yoon, J. Inorg. Chem. 2011, 50, 2240. https://doi.org/10.1021/ic1018967
  7. Nolan, E. M.; Lippard, S. J. Acc. Chem. Res. 2009, 42, 193. https://doi.org/10.1021/ar8001409
  8. Krmer, R. Angew. Chem. Int. Ed. 1998, 37, 772. https://doi.org/10.1002/(SICI)1521-3773(19980403)37:6<772::AID-ANIE772>3.0.CO;2-Z
  9. Fabbrizzi, L.; Licchelli, M.; Pallavicini, P.; Perotti, A.; Taglietti, A.; Sacchi, D. Chem. Eur. J. 1996, 2, 75. https://doi.org/10.1002/chem.19960020114
  10. Yoon, S.; Albers, A. E.; Wong, A. P.; Chang, C. J. J. Am. Chem. Soc. 2005, 127, 16030. https://doi.org/10.1021/ja0557987
  11. Kim, H. N.; Ren, W. X.; Kim, J. S.; Yoon J. Chem. Soc. Rev. 2012, 41, 3210. https://doi.org/10.1039/c1cs15245a
  12. Yoon, S.; Miller, E. W.; He, Q.; Do, P. H.; Chang. C. J. Angew. Chem. Int. Ed. 2007, 46, 6658. https://doi.org/10.1002/anie.200701785
  13. Xiang, Y.; Tong, A. Org. Lett. 2006, 8, 1549. https://doi.org/10.1021/ol060001h
  14. Proctor, P. H. Free Radicals and Human Disease. CRC Handbook of Free Radicals and Antioxidants 1989, 1, 209.
  15. Cricton, R. R.; Wilmet, S.; Legssyer, R.; Ward, R. J. Inorg. Biochem. 2002, 91, 9. https://doi.org/10.1016/S0162-0134(02)00461-0
  16. Breuer, W.; Ermers, M. J. J.; Pootrakul, P.; Abramov, A.; Hershko, C.; Cabantchik, Z. I. Blood 2001, 97, 792. https://doi.org/10.1182/blood.V97.3.792
  17. Lytton, S. D.; Mester, B.; Libman, J.; Shanzer, A.; Cabantchik, Z. I. Anal. Biochem. 1992, 205, 326. https://doi.org/10.1016/0003-2697(92)90443-B
  18. Ma, Y.; de Groot, H.; Liu, Z.; Hider, R. C.; Petrat, F. Biochem. J. 2006, 395, 49. https://doi.org/10.1042/BJ20051496
  19. Chen, J.-L.; Zhuo, S.-J.; Wu, Y.-Q.; Fang, F.; Li, L.; Zhu, C.-Q. Spectrochimica Acta Part A 2006, 63, 438. https://doi.org/10.1016/j.saa.2005.04.057
  20. Breuer, W.; Epsztejn, S.; Millgram, P.; Cabantchik, I. Z. Am. J. Physiol. 1995, 268, 1354. https://doi.org/10.1152/ajpcell.1995.268.6.C1354
  21. Kim, J.; Harrison, R. G.; Kim, C.; Que, L., Jr. J. Am. Chem. Soc. 1996, 118, 4373. https://doi.org/10.1021/ja9542303
  22. Sheldrick, G. M. Program Library for Structure Solution and Molecular Graphics, version 6.2; Bruker AXS: Madison, WI, 2000.
  23. Sheldrick, G. M. SADABS. Area-Detector Absorption Correction. University of Gttingen, Germany, 2001.
  24. Spek, A. L. PLATON, A Multipurpose Crystallographic Tool; Utrecht University: Utrecht, The Netherlands, 2000.

Cited by

  1. A cap-type Schiff base acting as a fluorescence sensor for zinc(II) and a colorimetric sensor for iron(II), copper(II), and zinc(II) in aque vol.42, pp.47, 2013, https://doi.org/10.1039/c3dt51916c
  2. A single colorimetric sensor for multiple target ions: the simultaneous detection of Fe2+ and Cu2+ in aqueous media vol.4, pp.43, 2012, https://doi.org/10.1039/c4ra02776k
  3. An imidazo-phenanthroline scaffold enables both chromogenic Fe(II) and fluorogenic Zn(II) detection vol.5, pp.11, 2012, https://doi.org/10.1039/c4ra14182b
  4. Development of an iron-selective antioxidant probe with protective effects on neuronal function vol.12, pp.12, 2012, https://doi.org/10.1371/journal.pone.0189043