• Title/Summary/Keyword: Metal Forming

검색결과 1,382건 처리시간 0.026초

열간가스성형용 알루미늄 개발 합금 공정 조건에 관한 연구 (Study on an Aluminum Modified Alloy and Manufacturing Conditions for Hot Metal Gas Forming)

  • 이경민;고건영;이현철;김동옥;이윤교;김정섭;송종호
    • 소성∙가공
    • /
    • 제26권4호
    • /
    • pp.222-227
    • /
    • 2017
  • In order to respond to environmental regulations and increased demand for fuel economy, the demand for lightweight car bodies has grown. Hydroforming of aluminum is one possible solution as it eliminates the need for additional welding to develop closed cross-sectional parts. However, the low formability of aluminum is a limitation of its application. On the other hand, the ductility of materials can be improved at higher temperatures, and hot metal gas forming has been widely applied in the production of lightweight vehicle parts. In this study, aluminum alloy for pipe extrusion was developed by controlling the Mg:Cr:Mn ratio based on AA5083. Mechanical properties of the developed material were examined by tensile test and were applied to a forming simulation. Cold forming simulation for preforming and non-isothermal hot forming simulation for hot metal gas forming were carried out to validate process conditions. A prototype of the sidemember was manufactured under the given process condition. Finally, thickness distribution was compared with finite element analysis results.

점진적 롤 성형 공정에서 공정 변수가 박판 금속의 곡률 생성에 미치는 영향 (An Effect of Process Parameters on the Generation of Sheet Metal Curvatures in the Incremental Roll Forming Process)

  • 윤석준;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 제4회 박판성형 심포지엄
    • /
    • pp.53-57
    • /
    • 2003
  • In order to make a doubly curved sheet metal effectively, a sheet metal farming process has been developed by adopting the flexibility of the incremental forming process and the principle of bending deformation which causes slight deformation to thickness. The developed process is an unconstrained forming process with no holder. For this study, the experimental equipment is set up with the roll set which consists of two pairs of support rolls and one center roll. In the experiments using aluminum sheets, it is found that the curvature of the formed sheet metal is determined by controlling the distance between supporting rolls in pairs and the forming depth of the center roll and it also depends on the thickness of the sheet metal. In order to check the effect of process parameters on the generation of sheet metal curvatures in this process, the orthogonal array is adopted. From the experimental results, among the process parameters, the distance between supporting rolls in pairs along the same direction of one principle radius of curvature as well as the forming depth and the thickness of the material is shown to influence the generation of curvature in the same direction significantly. That is, the other distance between supporting rolls in pairs which are not located in the same direction of one principle radius of curvature, does not have an significant effect on the generation of the curvature in that direction. It just affects the generation of curvature in its own direction mainly with the forming depth and the thickness of the material.

  • PDF

박판용 가변성형공정의 수치적 연구 (Numerical Study on Flexible Forming Process for Sheet Metal)

  • 허성찬;서영호;박중원;구태완;송우진;김정;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.281-284
    • /
    • 2009
  • Flexible forming process for sheet metal using reconfigurable die is introduced based on numerical simulation. Numerical simulation of sheet metal forming process is carried out by using flexible dies model instead of conventional matched die set. Elastic cushion which has high resilience behavior from excessive deformation are inserted between forming punches and blank material for smoothing the forming surface which has discrete due to characteristics of the flexile die. As an elastic cushion, urethane pads are utilized using hyperelastic material model in the simulation. Formability in view of surface defect such as onset of dimple is compared with regard to various punch sizes. Consequently, it is confirmed that the flexible forming process for sheet material has appropriate capability and feasibility for manufacturing of smoothly curved surface instead of conventional die forming process.

  • PDF

탄소성 동적해석시 해에 미치는 여러 인자들의 비교연구 (A Comparative Study on Elastic-Plastic -Dynamci Analysis of Sheet Metal Forming)

  • 박종진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.245-248
    • /
    • 1999
  • Explicit dynamic finite element analysis has been used widely in the field of sheet metal forming. However in using the analysis technique there are some parameters which are not clearly defined so that engineers may obtain inaccurate solutions In the present study parameters such as time step damping ratio penalty constant and punch speed were investigated on their influence to the solution behavior. Considered forming processes are plane stain bending by a punch and axisymmetric deep drawing.

  • PDF

점진성형에서 형상의 복잡도와 다이의 종류가 성형 정밀도에 미치는 영향 (Influence of the Part Shape Complexity and Die Type on Forming Accuracy in Incremental Sheet Metal Forming)

  • 이경부;강재관
    • 한국생산제조학회지
    • /
    • 제23권5호
    • /
    • pp.512-518
    • /
    • 2014
  • In this paper, the influence of part shape complexity and die type on forming accuracy in incremental sheet metal forming is presented. The part shape complexities are classified into two types, namely, of one and two-step shapes. Correspondingly, die types are classified into three types, namely, of no-, partial, and full die types. The experimental tests are performed separately on negative and positive forming methods. It is shown that for the one-step shape, there are no significant differences in forming errors between the cases of no- and full die types when the negative forming method is used. Furthermore, the full die type is better than the partial die when positive forming is used. For the two-step shape case, the full die type always exhibits better forming accuracy than the no- and partial die types, irrespective of the forming method used.

PC기반 소성가공공정 성형해석 시스템 개발 (Development of PC-based Simulation System for Metal Forming)

  • 곽대영;천재승;김수영;이근안;임용택
    • 소성∙가공
    • /
    • 제9권3호
    • /
    • pp.233-241
    • /
    • 2000
  • It is well known that the quality and efficiency of the design of metal forming processes can be significantly improved with the aid of effective numerical simulations. In the present study, a two-and three-dimensional finite element simulation system, CAMP form, was developed for the analysis of metal forming processes in the PC environment. It is composed of a solver based on the thermo-rigid-viscoplastic approach and graphic user interface (GUI) based pre-and post-processors to be used for the effective description of forming conditions and graphic display of simulation results, respectively. In particular, in the case of CAMPform 2D (two-dimensional), as the solver contains an automatic remeshing module which determines the deformation step when remeshing is required and reconstructs the new mesh system, it is possible to carry out simulations automatically without any user intervention. Also, the forming analysis considers ductile fracture of the workpiece and wear of dies for better usage of the system. In the case of CAMPform 3D, general three-dimensional problems that involve complex die geometries and require remeshing can be analyzed, but full automation of simulations has yet to be achieved. In this paper, the overall structure and computational background of CAMPform will be briefly explained and analysis results of several forming processes will be shown. From the current results, it is construed that CAMPform can be used in providing useful information to assist the design of forming processes.

  • PDF

금속 벨로우즈의 성형 해석 (Forming Analysis of a Metal Bellows)

  • 이상욱
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.100-105
    • /
    • 2001
  • The manufacturing of metal bellows consists of the four main forming processes, deep-drawing, ironing, tube bulging and folding. Among these, the bulging and folding processes are critically important because the quality of metal bellows is greatly influenced by the forming conditions of these processes. In the present study, the finite element analysis technique is applied to the bulging and folding processes to obtain information about the design parameters of a metal bellows.

  • PDF

박판성형공정의 유한요소해석을 위한 드로우비드 전문모델 개발 (1부: 실험) (Development of Drawbead Expert Models for Finite Element Analysis of Sheet Metal Forming Process (Part1: Experiment))

  • 금영탁;이재우;박승우
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 춘계학술대회논문집
    • /
    • pp.46-49
    • /
    • 1997
  • During sheet metal forming on a double-action press, drawbeads on the blankholder supply a restraining force which controls the flow of metal into the die. The sheet formability can be improved by the optimum drawbeads installation when the punch enters into the die opening. Experiments on the various drawbeads, circular, step, double circular, and circular-step drawbead, have been performed under various working conditions.

  • PDF

금속 판재 성형 기술의 진보 (Progress in Sheet Metal Forming Technology)

  • 박종우
    • 소성∙가공
    • /
    • 제11권3호
    • /
    • pp.223-230
    • /
    • 2002
  • Matched die forming technology has been used widely as a sheet metal forming method for a long time. This conventional method, however, needs a high cost and long delivery time to prepare a set of matched dies or, in many cases, several sets of dies. For more than ten years, some alternative methods using single die or non-matched dies have been developed and applied practically in various fields of industry. Elasto-forming, fluid forming, hydro-forming, and blow forming are some examples of these new methods. Recently, a dieless sheet forming technology using a reconfigurable matrix of punch elements has been developed, and started to be used in some industries such as aircraft and railroads. A new concept of dieless forming technology has also been proposed to overcome the drawback of the conventional dieless forming technology.

유한요소해석을 이용한 브레이크 챔버 헤드 판재 성형에 관한 연구 (Study on the Sheet Metal Forming of the Brake Chamber Head using the Finite Element Analysis)

  • 이상익;최동환;이진우;이정환
    • 소성∙가공
    • /
    • 제26권2호
    • /
    • pp.79-86
    • /
    • 2017
  • In this study, the sheet metal forming process of the brake chamber head, which had a complex shape compared to the conventional head part, was investigated using finite element (FE) analysis. In order to prevent the forming failures such as necking and fracture, the multi-stage forming process was introduced. The forming process consisted of three steps: (1) first drawing, (2) second drawing, (3) final forming. Experimental and FE simulated results of the brake chamber head were compared, and the results showed that the required characteristics of the straightness and the wall thickness at each location were satisfied.