• Title/Summary/Keyword: Metal Foil

Search Result 155, Processing Time 0.035 seconds

Status of Research on Selective Laser Sintering of Nanomaterials for Flexible Electronics Fabrication (나노물질의 선택적 레이저소결을 이용한 유연전기소자 구현 연구현황)

  • Ko, Seung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.533-538
    • /
    • 2011
  • A plastic-compatible low-temperature metal deposition and patterning process is essential for the fabrication of flexible electronics because they are usually built on a heat-sensitive flexible substrate, for example plastic, fabric, paper, or metal foil. There is considerable interest in solution-processible metal nanoparticle ink deposition and patterning by selective laser sintering. It provides flexible electronics fabrication without the use of conventional photolithography or vacuum deposition techniques. We summarize our recent progress on the selective laser sintering of metals and metal oxide nanoparticles on a polymer substrate to realize flexible electronics such as flexible displays and flexible solar cells. Future research directions are also discussed.

A STUDY ON THE COLOR CHANCE OF CERAMIC BY Pd-Ag ALLOY AND MECHANISM (팔라디움-은합금에 의한 도재의 색조변화 및 변색작용에 관한 연구)

  • Youn, Soo-Sun;Lee, Sun-Hyung;Yang, Jae-Ho;Chong, Hun-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.27 no.1
    • /
    • pp.123-141
    • /
    • 1989
  • The purpose of this study was to investigate the tendency of color change of ceramic, and its mechanism un der the influence of Pd-Ag alloy. The specimens were made by firing porcelain on tile metal plates cast with Au-Pt alloy, Pd-Cu alloy and Pd-Ag alloy. In the case of Pd-Ag alloy, specimens were fired under three different conditions as follows, 1) without protection, 2) protection with ceramic metal conditioner, 3) protection with carbon block. For the specimens of element analysis, a barrier was constructed with platinum foil between metal plate and ceramic. Color change was measured with colorimeter and elemental changes in ceramic were calculated with DC argon plasma emission spectrophotometer. The results were as follows : 1. Color change of ceramic by Pd-Ag alloy was negligible in hue, but decreased in value and increased in chroma (yellow discoloration). 2. Color change of ceramic by Pd-Ag alloy was appeared through vapor transport mechanism. 3. As the protection method for the color change of ceramic by Pd-Ag alloy, application of ceramic metal conditioner was superior to utilization of carbon block.

  • PDF

A Study for The X-ray Image Acquisition Experiment Using by Gas Electron Multipliers (기체전자증폭기를 이용한 X-선 영상획득실험에 관한 연구)

  • 강상묵;한상효;조효성;남상희
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.83-89
    • /
    • 2003
  • The gas electron multiplier placed in the drift volume of conventional gas detectors, is a conceptually simple device for producing a large gas gain by concentrating the drift electric field over a very short distance to the point that electron avalanching occurs(〉 10$^4$ V/cm), greatly increasing the number of drifting electrons. This device consists of a thin insulating foil of several tens of urn in thickness. covered on each side with a thin metal layer(Cu), with tiny holes, usually 100 ${\mu}{\textrm}{m}$ or less in diameter. and with a spacing of 100-200 ${\mu}{\textrm}{m}$ through the entire foil. perforated by using chemical etching or high-powered laser beam technique In this study, we have investigated its operating properties with various experimental conditions, and demonstrated the possibility of using this device as a digital X-ray imaging sensor, by acquiring X-ray images based on the scintillation properties of the gas electron multiplier with standard CCD camera.

Sol-gel Coating of ZrO2 Film in Aluminium Etch Pit and Anodizing Properties (알루미늄 에치피트에 ZrO2 막의 졸-겔 코팅 및 양극산화 특성)

  • Chen, Fei;Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.24 no.5
    • /
    • pp.259-265
    • /
    • 2014
  • $ZrO_2$ films were coated on aluminum etching foil by the sol-gel method to apply $ZrO_2$ as a dielectric material in an aluminum(Al) electrolytic capacitor. $ZrO_2$ films annealed above $450^{\circ}C$ appeared to have a tetragonal structure. The withdrawal speed during dip-coating, and the annealing temperature, influenced crack-growth in the films. The $ZrO_2$ films annealed at $500^{\circ}C$ exhibited a dielectric constant of 33 at 1 kHz. Also, uniform $ZrO_2$ tunnels formed in Al etch-pits $1{\mu}m$ in diameter. However, $ZrO_2$ film of 100-200 nm thickness showed the withstanding voltage of 15 V, which was unsuitable for a high-voltage capacitor. In order to improve the withstanding voltage, $ZrO_2$-coated Al etching foils were anodized at 300 V. After being anodized, the $Al_2O_3$ film grew in the directions of both the Al-metal matrix and the $ZrO_2$ film, and the $ZrO_2$-coated Al foil showed a withstanding voltage of 300 V. However, the capacitance of the $ZrO_2$-coated Al foil exhibited only a small increase because the thickness of the $Al_2O_3$ film was 4-5 times thicker than that of $ZrO_2$ film.

Micro pattern forming on the metal thin foil Using micro dieless forming system (마이크로 다이레스 성형 시스템을 이용한 금속박판소재의 마이크로 패턴 성형)

  • Lee, H.J.;Lee, H.W.;Park, J.H.;Lee, N.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.379-382
    • /
    • 2007
  • The MEMS (Micro Electro Mechanical Systems) process is used in a micro/nano pattern manufacturing method. This method is based on the lithography technology. But the MEMS process has some problems such as complicated process, long processing time and high production costs. Many researchers are doing research in substitute manufacturing method to work out a solution to these problems. In this paper, we apply a dieless incremental forming technology to a substitute method of MEMS process. This dieless forming technology is using in the commercial scale sheet forming such as a prototype of automobile sheet parts. 5-axes CNC (Computerized Numeric Control) method are applied in this system to get a micro-scale dieless forming results. These 5-axes system are composed of precision AC servo motor stages (4-axes) and PZT actuator (1-axis). A PZT actuator is used in a precision actuating axis because it can be operated in the nano scale stroke resolution. This micro dieless incremental forming system has the advantage of minimization in manipulating distance and working space. As equipment and tools become smaller in size, minute inertia force and high natural frequency can be obtained. Therefore, high precision forming performance can be obtained. This allows the factory to quickly provide the customer with goods because the manufacturing system and process are reduced. To construct this micro manufacturing system, many technologies are necessary such as high stiffness frame, high precision actuating part, structural analysis, high precision tools and system control. To achieve the optimal forming quality, the micro dieless forming system is designed and made with high stiffness characteristic.

  • PDF

Crack propagation behavior of in-situ structural gradient Ni/Ni-aluminide//Ti/Ti-aluminide laminate materials (Ni/Ni-aluminide//Ti/Ti-aluminide 구조경사형 층상재료의 균열 전파 거동)

  • Chung, D.S.;Kim, J.K.;Cho, H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.6
    • /
    • pp.269-275
    • /
    • 2005
  • Ni/Ni-aluminide/Ti/Ti-aluminide laminate composite, considered as a functionally gradient material, was manufactured by thin foil hot press technique. Thick intermetallic layers of NiAl and $TiAl_3$ were formed by a self-propagating high-temperature synthesis (SHS) reaction, and thin continuous taters of $Ni_3Al$ and TiAl were formed by a solid-state diffusion. Fracture resistance with loading along the crack arrester direction is higher than crack divider direction due to the interruption of crack growth in metal layers. The $Ni_3Al$ and NiAl intermetallic layer showed cleavage and intergranular fracture behavior, respectively, while the fracture mode of $TiAl_3$ layer was found to be an intragranular cleavage. The debonding between metal and intermetallic layer and the pores were observed in the Ni/Ni-aluminide layers, resulting in the lower fracture resistance. With the results of acoustic emission (AE) source characterization the real time of failure and the effect of AE to crack growth could be monitored.

A Study on the Effect of Graphene Substrate for Growth of Vanadium Dioxide Nanostructures (이산화바나듐 나노구조물의 성장에서 그래핀 기판의 영향에 관한 연구)

  • Kim, Ki-Chul
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.5
    • /
    • pp.95-100
    • /
    • 2018
  • The metal oxide/graphene nanocomposites are promising functional materials for high capacitive electrode material of secondary batteries, and high sensitive material of high performance gas sensors. In this study, vanadium dioxide($VO_2$) nanostructrures were grown on CVD graphene which was synthesized on Cu foil by thermal CVD, and exfoliated graphene which was exfoliated from highly oriented pyrolytic graphite(HOPG) using a vapor transport method. As results, $VO_2$ nanostructures on CVD graphene were grown preferential growth on abundant functional groups of graphene grain boundaries. The functional groups are served to nucleation site of $VO_2$ nanostructures. On the other hand, 2D & 3D $VO_2$ nanostructures were grown on exfoliated graphene due to uniformly distributed functional groups on exfoliated graphene surface. The characteristics of morphology controlled growth of $VO_2$/graphene nanocomposites would be applied to fabrication process for high capacitive electrode materials of secondary batteries, and high sensitive materials of gas sensors.

A comparison of marginal fit of glass infiltrated alumina copings fabricated using two different techniques and the effect of firing cycles over them

  • Bhowmik, Hirasankar;Parkhedkar, Rambhao
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.4
    • /
    • pp.196-203
    • /
    • 2011
  • PURPOSE. This study evaluated marginal fit of glass infiltrated alumina cores fabricated using two techniques and their marginal stability after firing cycles of veneering porcelain. MATERIALS AND METHODS. Fifteen standardized all-ceramic crowns were fabricated on a metal die using each technique: slip cast technique of VITA In-Ceram sprint Alumina (Group A as control) and plastic foil matrix technique of Turkom-Cera fused alumina core system (Group B). Copings were compared between groups and within groups at coping stage and after firing each layer of veneering porcelain. A device was used to standardize seating of copings on the metal die and positioning of the specimens under the microscope after each stage of fabrication. The specimens were not cemented and marginal gap was measured using an image analyzing software (Imagepro Express) on the photographs captured under an optical microscope. Two tailed unpaired 't test' was used to compare marginal gaps in two groups and one way ANOVA was used to analyze marginal distortion within each group at 95% confidence interval. RESULTS. The marginal gap was smaller at the coping stage in group B ($60+30{\mu}M$) than group A ($81+21{\mu}M$) with statistical significance. After firing of veneering porcelain the difference was insignificant. At the final stage, both groups exhibited lower mean marginal gaps than at the initial coping stage with the difference of $11.75{\mu}M$ for group A and $11.94{\mu}M$ for group B, but it was statistically insignificant due to high value of standard deviation. CONCLUSION. Within the limitations of this study, it was concluded that both techniques produced copings with comparable and acceptable marginal fit and marginal stability on firing veneering porcelain.

Origin of Tearing Paths in Transferred Graphene by H2 Bubbling Process and Improved Transfer of Tear-Free Graphene Films U sing a Heat Press

  • Jinsung Kwak
    • Korean Journal of Materials Research
    • /
    • v.32 no.12
    • /
    • pp.522-527
    • /
    • 2022
  • Among efforts to improve techniques for the chemical vapor deposition of large-area and high-quality graphene films on transition metal substrates, being able to reliably transfer these atomistic membranes onto the desired substrate is a critical step for various practical uses, such as graphene-based electronic and photonic devices. However, the most used approach, the wet etching transfer process based on the complete etching of metal substrates, remains a great challenge. This is mainly due to the inevitable damage to the graphene, unintentional contamination of the graphene layer, and increased production cost and time. Here, we report the systematic study of an H2 bubbling-assisted transfer technique for graphene films grown on Cu foils, which is nondestructive not only to the graphene film but also to the Cu substrate. Also, we demonstrate the origin of the graphene film tearing phenomenon induced by this H2 bubbling-assisted transfer process. This study reveals that inherent features are produced by rolling Cu foil, which cause a saw-like corrugation in the poly(methyl methacrylate) (PMMA)/graphene stack when it is transferred onto the target substrate after the Cu foil is dissolved. During the PMMA removal stage, the graphene tearing mainly appears at the apexes of the corrugated PMMA/graphene stack, due to weak adhesion to the target substrate. To address this, we have developed a modified heat-press-assisted transfer technique that has much better control of both tearing and the formation of residues in the transferred graphene films.

Characterizations of Highly Ordered TiO2 Nanotube Arrays Obtained by Anodic Oxidation

  • Park, Hun;Kim, Ho-Gi;Choi, Won-Youl
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.3
    • /
    • pp.112-115
    • /
    • 2010
  • This paper provides the properties of $TiO_2$ nanotube arrays which are fabricated by anodic oxidation of Ti metal. Highly ordered $TiO_2$ nanotube arrays could be obtained by anodic oxidation of Ti foil in $0.3\;wt{\cdot}%$ $NH_4F$ contained ethylene glycol solution at $30^{\circ}C$. The length, pore size, wall thickness, tube diameter etc. of $TiO_2$ nanotube arrays were analyzed by field emission scanning electron microscopy. Their crystal properties were studied by field emission transmission electron microscopy and X-ray photoelectron spectroscopy.