• Title/Summary/Keyword: Metabolites profiling

Search Result 91, Processing Time 0.026 seconds

1H-NMR-Based Metabolic Profiling of Cordyceps militaris to Correlate the Development Process and Anti-Cancer Effect

  • Oh, Junsang;Choi, Eunhyun;Yoon, Deok-Hyo;Park, Tae-Yong;Shrestha, Bhushan;Choi, Hyung-Kyoon;Sung, Gi-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.8
    • /
    • pp.1212-1220
    • /
    • 2019
  • The study of metabolomics in natural products using the diverse analytical instruments including GC-MS, LC-MS, and NMR is useful for the exploration of physiological and biological effects and the investigation of drug discovery and health functional foods. Cordyceps militaris has been very attractive to natural medicine as a traditional Chinese medicine, due to its various bioactive properties including anti-cancer and anti-oxidant effects. In this study, we analyzed the metabolite profile in 50% ethanol extracts of C. militaris fruit bodies from three development periods (growth period, matured period, and aging period) using $^1H-NMR$, and identified 44 metabolites, which are classified as 16 amino acids, 10 organic acids, 5 carbohydrates, 3 nucleotide derivatives, and 10 other compounds. Among the three development periods of the C. militaris fruit body, the aging period showed significantly higher levels of metabolites including cordycepin, mannitol (cordycepic acid), and ${\beta}-glucan$. Interestingly, these bioactive metabolites are positively correlated with antitumor growth effect; the extract of the aging period showed significant inhibition of HepG2 hepatic cancer cell proliferation. These results showed that the aging period during the development of C. militaris fruit bodies was more highly enriched with bioactive metabolites that are associated with cancer cell growth inhibition.

Metabolomic profiling of postmortem aged muscle in Japanese Brown beef cattle revealed an interbreed difference from Japanese Black beef

  • Susumu Muroya;Riko Nomura;Hirotaka Nagai;Koichi Ojima;Kazutsugu Matsukawa
    • Animal Bioscience
    • /
    • v.36 no.3
    • /
    • pp.506-520
    • /
    • 2023
  • Objective: Japanese Brown (JBR) cattle, especially the Kochi (Tosa) pedigree (JBRT), is a local breed of moderately marbled beef. Despite the increasing demand, the interbreed differences in muscle metabolites from the highly marbled Japanese Black (JBL) beef remain poorly understood. We aimed to determine flavor-related metabolites and postmortem metabolisms characteristic to JBRT beef in comparison with JBL beef. Methods: Lean portions of the longissimus thoracis (loin) muscle from four JBRT cattle were collected at 0, 1, and 14 d postmortem. The muscle metabolomic profiles were analyzed using capillary electrophoresis time-of-flight mass spectrometry. The difference in post-mortem metabolisms and aged muscle metabolites were analyzed by statistical and bioinformatic analyses between JBRT (n = 12) and JBL cattle (n = 6). Results: A total of 240 metabolite annotations were obtained from the detected signals of the JBRT muscle samples. Principal component analysis separated the beef samples into three different aging point groups. According to metabolite set enrichment analysis, post-mortem metabolic changes were associated with the metabolism of pyrimidine, nicotinate and nicotinamide, purine, pyruvate, thiamine, amino sugar, and fatty acid; citric acid cycle; and pentose phosphate pathway as well as various amino acids and mitochondrial fatty acid metabolism. The aged JBRT beef showed higher ultimate pH and lower lactate content than aged JBL beef, suggesting the lower glycolytic activity in postmortem JBRT muscle. JBRT beef was distinguished from JBL beef by significantly different compounds, including choline, amino acids, uridine monophosphate, inosine 5'-monophosphate, fructose 1,6-diphosphate, and betaine, suggesting interbreed differences in the accumulation of nucleotide monophosphate, glutathione metabolism, and phospholipid metabolism. Conclusion: Glycolysis, purine metabolism, fatty acid catabolism, and protein degradation were the most common pathways in beef during postmortem aging. The differentially expressed metabolites and the relevant metabolisms in JBRT beef may contribute to the development of a characteristic flavor.

Effect of Temperature Abuse on Quality and Metabolites of Frozen/Thawed Beef Loins

  • Kwon, Jeong A;Yim, Dong-Gyun;Kim, Hyun-Jun;Ismail, Azfar;Kim, Sung-Su;Lee, Hag Ju;Jo, Cheorun
    • Food Science of Animal Resources
    • /
    • v.42 no.2
    • /
    • pp.341-349
    • /
    • 2022
  • The objective of this study was to examine the effect of temperature abuse prior to cold storage on changes in quality and metabolites of frozen/thawed beef loin. The aerobic packaged samples were assigned to three groups: refrigeration (4℃) (CR); freezing (-18℃ for 6 d) and thawing (20±1℃ for 1 d), followed by refrigeration (4℃) (FT); temperature abuse (20℃ for 6 h) prior to freezing (-18℃ for 6 d) and thawing (20±1℃ for 1 d), followed by refrigeration (4℃) (AFT). FT and AFT resulted in higher volatile basic nitrogen (VBN) values than CR (p<0.05), and these values rapidly increased in the final 15 d. Cooking loss decreased significantly with an increase in the storage period (p<0.05). In addition, cooking loss was lower in the FT and AFT groups than in the CR owing to water loss after storage (p<0.05). A scanning electron microscope (SEM) revealed that frozen/thawed beef samples were influenced by temperature abuse in the structure of the fiber at 15 d. Metabolomic analysis showed differences among CR, FT, and AFT from partial least square discriminant analysis (PLS-DA) based on proton nuclear magnetic resonance (1H NMR) profiling. The treatments differed slightly, with higher FT than AFT values in several metabolites (phenylalanine, isoleucine, valine, betaine, and tyrosine). Overall, temperature abuse prior to freezing and during thawing of beef loin resulted in accelerated quality changes.

Metabolites profiling and hypolipidemic/hypocholesterolemic effects of persimmon (Diosyros kaki Thumb.) by different processing procedures: in vitro and in vivo studies (제조방법에 따른 떫은감 (Diosyros kaki Thumb.)의 대사체 프로파일링과 중성지질/콜레스테롤 대사 관련 유전자발현 연구 : in vitro 및 in vivo 연구)

  • Park, Soo-Yeon;Oh, Eun-Kyung;Lim, Yeni;Shin, Ji-Yoon;Jung, Hee-Ah;Park, Song-Yi;Lee, Jin Hee;Choe, Jeong-Sook;Kwon, Oran
    • Journal of Nutrition and Health
    • /
    • v.51 no.4
    • /
    • pp.275-286
    • /
    • 2018
  • Purpose: Our previous study demonstrated that persimmon (Diospyros kaki Thumb.) at different stages of ripening provided different protective effects against high-fat/cholesterol diet (HFD)-induced dyslipidemia in rats. In this study, we compared the metabolites profile and gene expressions related to triglyceride (TG)/cholesterol metabolism in vitro and in vivo after treating with persimmon water extracts (PWE) or tannin-enriched persimmon concentrate (TEP). Methods: Primary and secondary metabolites in test materials were determined by GC-TOF/MS, UHPLC-LTQ-ESI-IT-MS/MS, and UPLC-Q-TOF-MS. The expression of genes related to TG and cholesterol metabolism were determined by RT-PCR both in HepG2 cells stimulated by oleic acid/palmitic acid and in liver tissues obtained from Wistar rats fed with HFD and PWE at 0, 150, 300, and 600 mg/d (experiment I) or TEP at 0, 7, 14, and 28 mg/d (experiment II) by oral gavage for 9 weeks. Results: PLS-DA analysis and heatmap analysis demonstrated significantly differential profiling of metabolites of PWE and TEP according to processing of persimmon powder. In vitro, TEP showed similar hypolipidemic effects as PWE, but significantly enhanced hypocholesterolemic effects compared to PWE in sterol regulatory element-binding protein 2 (SREBP2), HMG-CoA reductase (HMGCR), proprotein convertase subtilisin/kexin type 9 (PCSK9), cholesterol $7{\alpha}-hydroxylase$ (CYP7A1), and low density lipoprotein receptor (LDLR) gene expression. Consistently, TEP and PWE showed similar hypolipidemic capacity in vivo, but significantly enhanced hypocholesterolemic capacity in terms of SREBP2, HMGCR, and bile salt export pump (BSEP) gene expression. Conclusion: These results suggest that column extraction after hot water extraction may be a good strategy to enhance tannins and long-chain fatty acid amides, which might cause stimulation of hypocholesterolemic actions through downregulation of cholesterol biosynthesis gene expression and upregulation of LDL receptor gene expression.

Effects of acute heat stress on salivary metabolites in growing pigs: an analysis using nuclear magnetic resonance-based metabolomics profiling

  • Kim, Byeonghyeon;Kim, Hye Ran;Kim, Ki Hyun;Ji, Sang Yun;Kim, Minji;Lee, Yookyung;Lee, Sung Dae;Jeong, Jin Young
    • Journal of Animal Science and Technology
    • /
    • v.63 no.2
    • /
    • pp.319-331
    • /
    • 2021
  • Heat stress (HS) causes adverse impacts on pig production and health. A potential biomarker of HS is required to predict its occurrence and thereby better manage pigs under HS. Information about the saliva metabolome in heat-stressed pigs is limited. Therefore, this study was aimed to investigate the effects of acute HS on the saliva metabolome and identify metabolites that could be used as potential biomarkers. Growing pigs (n = 6, 3 boars, and 3 gilts) were raised in a thermal neutral (TN; 25℃) environment for a 5-d adaptation period (CON). After adaptation, the pigs were first exposed to HS (30℃; HS30) and then exposed to higher HS (33℃; HS33) for 24 h. Saliva was collected after adaptation, first HS, and second HS, respectively, for metabolomic analysis using 1H-nuclear magnetic resonance spectroscopy. Four metabolites had significantly variable importance in the projection (VIP > 1; p < 0.05) different levels in TN compared to HS groups from all genders (boars and gilts). However, sex-specific characteristics affected metabolites (glutamate and leucine) by showing the opposite results, indicating that HS was less severe in females than in males. A decrease in creatine levels in males and an increase in creatine phosphate levels in females would have contributed to a protective effect from protein degradation by muscle damage. The results showed that HS led to an alteration in metabolites related to energy and protein. Protection from muscle damage may be attributed to the alteration in protein-related metabolites. However, energy-related metabolites showed opposing results according to sex-specific characteristics, such as sex hormone levels and subcutaneous fat layer. This study had shown that saliva samples could be used as a noninvasive method to evaluate heat-stressed pigs. And the results in this study could be contributed to the development of a diagnostic tool as a noninvasive biomarker for managing heat-stressed pigs.

Cardioprotective effect of ginsenoside Rb1 via regulating metabolomics profiling and AMP-activated protein kinase-dependent mitophagy

  • Hu, Jingui;Zhang, Ling;Fu, Fei;Lai, Qiong;Zhang, Lu;Liu, Tao;Yu, Boyang;Kou, Junping;Li, Fang
    • Journal of Ginseng Research
    • /
    • v.46 no.2
    • /
    • pp.255-265
    • /
    • 2022
  • Background: Ginsenoside Rb1, a bioactive component isolated from the Panax ginseng, acts as a remedy to prevent myocardial injury. However, it is obscure whether the cardioprotective functions of Rb1 are related to the regulation of endogenous metabolites, and its potential molecular mechanism still needs further clarification, especially from a comprehensive metabolomics profiling perspective. Methods: The mice model of acute myocardial ischemia (AMI) and oxygen glucose deprivation (OGD)-induced cardiomyocytes injury were applied to explore the protective effect and mechanism of Rb1. Meanwhile, the comprehensive metabolomics profiling was conducted by high-performance liquid chromatography and quadrupole time-of-flight mass spectrometry (HPLC-Q/TOF-MS) and a tandem liquid chromatography and mass spectrometry (LC-MS). Results: Rb1 treatment profoundly reduced the infarct size and attenuated myocardial injury. The metabolic network map of 65 differential endogenous metabolites was constructed and provided a new inspiration for the treatment of AMI by Rb1, which was mainly associated with mitophagy. In vivo and in vitro experiments, Rb1 was found to improve mitochondrial morphology, mitochondrial function and promote mitophagy. Interestingly, the mitophagy inhibitor partly attenuated the cardioprotective effect of Rb1. Additionally, Rb1 markedly facilitated the phosphorylation of AMP-activated protein kinase α (AMPKα), and AMPK inhibition partially weakened the role of Rb1 in promoting mitophagy. Conclusions: Ginsenoside Rb1 protects acute myocardial ischemia injury through promoting mitophagy via AMPKα phosphorylation, which might lay the foundation for the further application of Rb1 in cardiovascular diseases.

Correlation analysis of human urinary metabolites related to gender and obesity using NMR-based metabolic profiling

  • Kim, Ja-Han;Park, Jung-Dae;Park, Sung-Soo;Hwang, Geum-Sook
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.16 no.1
    • /
    • pp.46-66
    • /
    • 2012
  • Metabolomic studies using human urine have shown that human metabolism is altered by a variety of environmental, cultural, and physiological factors. Comprehensive information about normal human metabolite profiles is necessary for accurate clinical diagnosis of disease and for disease prevention and treatment. In this study, metabolite correlation analyses, using $^1H$ nuclear magnetic resonance (NMR) spectroscopy coupled with multivariate statistics, were performed on human urine to compare metabolic differences based on gender and/or obesity in healthy human subjects. First, we applied partial least squares discriminant analysis to the NMR spectral data set to verify the data's ability to discriminate by gender and obesity. Then, the differences in metabolite-metabolite correlation between male and female, and between normal and high body mass index (obese) subjects were investigated through pairwise correlations. Creatine and several metabolites, including isoleucine, trans-aconitate, and trimethylamine N-oxide (TMAO), exhibited different quantitative relationships depending on gender. Dimethylamine had a different correlation with glycine and TMAO, based on gender. The correlation of TMAO with amino acids was considerably lower in obese, compared to normal, subjects. We expect that the results will shed light on the metabolic pathways of healthy humans and will assist in the accurate diagnosis of human disease.

Evaluation of Recent Data Processing Strategies on Q-TOF LC/MS Based Untargeted Metabolomics

  • Kaplan, Ozan;Celebier, Mustafa
    • Mass Spectrometry Letters
    • /
    • v.11 no.1
    • /
    • pp.1-5
    • /
    • 2020
  • In this study, some of the recently reported data processing strategies were evaluated and modified based on their capabilities and a brief workflow for data mining was redefined for Q-TOF LC-MS based untargeted metabolomics. Commercial pooled human plasma samples were used for this purpose. An ultrafiltration procedure was applied on sample preparation. Sample set was analyzed through Q-TOF LC/MS. A C18 column (Agilent Zorbax 1.8 µM, 50 × 2.1 mm) was used for chromatographic separation. Raw chromatograms were processed using XCMS - R programming language edition and Isotopologue Parameter Optimization (IPO) was used to optimize XCMS parameters. The raw XCMS table was processed using MS Excel to find reliable and reproducible peaks. Totally 1650 reliable and reproducible potential metabolite peaks were found based on the data processing procedures given in this paper. The redefined dataset was upload into MetaboAnalyst platform and the identified metabolites were matched with 86 metabolic pathways. Thus, two list were obtained and presented in this study as supplement files. The first list is to present the retention times and m/z values of detected metabolite peaks. The second list is the metabolic pathways related with the identified metabolites. The briefly described data processing strategies and dataset presented in this study could be beneficial for the researchers working on untargeted metabolomics for processing their data and validating their results.

Tracing Metabolite Footsteps of Escherichia coli Along the Time Course of Recombinant Protein Expression by Two-Dimensional NMR Spectroscopy

  • Chae, Young Kee;Kim, Seol Hyun;Ellinger, James J.;Markley, John L.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4041-4046
    • /
    • 2012
  • The recombinant expression of proteins has been the method of choice to meet the demands from proteomics and structural genomics studies. Despite its successful production of many heterologous proteins, Escherichia coli failed to produce many other proteins in their native forms. This may be related to the fact that the stresses resulting from the overproduction interfere with cellular processes. To better understand the physiological change during the overproduction phase, we profiled the metabolites along the time course of the recombinant protein expression. We identified 32 metabolites collected from different time points in the protein production phase. The stress induced by protein production can be characterized by (A) the increased usage of aspartic acid, choline, glycerol, and N-acetyllysine; and (B) the accumulation of adenosine, alanine, oxidized glutathione, glycine, N-acetylputrescine, and uracil. We envision that this work can be used to create a strategy for the production of usable proteins in large quantities.

HPLC-based metabolic profiling and quality control of leaves of different Panax species

  • Yang, Seung-Ok;Lee, Sang Won;Kim, Young Ock;Sohn, Sang-Hyun;Kim, Young Chang;Hyun, Dong Yoon;Hong, Yoon Pyo;Shin, Yu Su
    • Journal of Ginseng Research
    • /
    • v.37 no.2
    • /
    • pp.248-253
    • /
    • 2013
  • Leaves from Panax ginseng Meyer (Korean origin and Chinese origin of Korean ginseng) and P. quinquefolius (American ginseng) were harvested in Haenam province, Korea, and were analyzed to investigate patterns in major metabolites using HPLC-based metabolic profiling. Partial least squares discriminant analysis (PLS-DA) was used to analyze the the HPLC chromatogram data. There was a clear separation between Panax species and/or origins from different countries in the PLS-DA score plots. The ginsenoside compounds of Rg1, Re, Rg2, Rb2, Rb3, and Rd in Korean leaves were higher than in Chinese and American ginseng leaves, and the Rb1 level in P. quinquefolius leaves was higher than in P. ginseng (Korean origin or Chinese origin). HPLC chromatogram data coupled with multivariate statistical analysis can be used to profile the metabolite content and undertake quality control of Panax products.