• Title/Summary/Keyword: Metabolites profiling

Search Result 91, Processing Time 0.024 seconds

Advances in Plant Metabolomics (식물 대사체 연구의 진보)

  • Kim, Suk-Won;Chung, Hoe-Il;Liu, Jang-R.
    • Journal of Plant Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.161-169
    • /
    • 2006
  • Plant metabolomics is a plant biology field for identifying all of the metabolites found in a certain plant cell, tissue, organ, or whole plant in a given time and conditions and for studying changes in metabolic profiling as time goes or conditions change. Metabolomics is one of the most recently developed omics for holistic approach to biology and is a kind of systems biology. For holistic approach, metabolomics frequently uses chemometrics or multivariate statistical analysis of metabolic profillings. In plant biology, metabolomics is useful to determine functions of genes often in combination with DHA microarrays by analyzing tagged mutants of the model plants Arabidopsis and rice. This review paper attempted to introduce basic concepts of metabolomics and practical uses of multivariate statistical analysis of metabolic profiling obtained by $^1$H HMR and Fourier transform infrared spectrometry.

1H NMR-based metabolomic study of Cornus officinalis from different geographical origin

  • Jung, Young-Ae;Jung, Young-Sang;Hwang, Geum-Sook
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.15 no.2
    • /
    • pp.90-103
    • /
    • 2011
  • Cornus officinalis (Cornaceae) is primarily grown in Asian countries. The pericarp of C. officinalis (Corni Fructus) is a well-known traditional medicine with tonic, analgesic, and diuretic properties. We analyzed methanolic extracts of Corni Fructus (grown in Korea and China) by $^1H$ NMR spectroscopy. Metabolite profiling was performed to characterize the metabolic difference between different Corni Fructus origins (Korea or China). Principal components analysis revealed significant separation between Comus Fructus from different origins. The metabolites responsible for differences were identified using loading plots, coefficients plots, and variable influence on projection followed by t-tests. As a result, 16 metabolites were identified and quantified; tyrosine, acetate, sucrose, and malate differed the most between origins. These data suggest that NMR-based metabolomics can be used to identify differences between Corni Fructus samples obtained from different regions.

Practical Guide to NMR-based Metabolomics - I : Introduction and Experiments

  • Jung, Young-Sang
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.3
    • /
    • pp.96-101
    • /
    • 2017
  • Metabolomics is one of latest '-omics', which is to analyze metabolome in cells, tissues and biofluids and to study metabolisms. It has become increasingly popular since 1990. The first goal of metabolomics is to analyze metabolites in a technical aspect. The major two analytical platforms in metabolomics are NMR spectroscopy and mass spectrometry (MS). MS is superior to NMR for detecting many more metabolites. That is one of the most important factors in metabolomics. However, NMR also has several advantages over MS. In this review, I firstly introduced metabolomics by comparing NMR-based metabolomics and MS-based metabolomics. Second, I explored technical issues on sample preparation and NMR experiments for metabolite identification and quantification.

Metabolite Profiling of Serum from Patients with Tuberculosis

  • Park, Hee-Bin;Yoo, Min-Gyu;Choi, Sangho;Kim, Seong-Han;Chu, Hyuk
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.2
    • /
    • pp.264-268
    • /
    • 2021
  • Tuberculosis (TB) is a major infectious disease that threatens the life and health of people globally. Here, we performed a metabolomic analysis of serum samples from patients with intractable TB to identify biomarkers that might shorten the TB treatment period. Serum samples collected at the commencement of patients' treatment and healthy controls were analyzed using the capillary electrophoresis and time-of-flight mass spectrometry metabolome analysis method. The analysis identified the metabolites cystine, kynurenine, glyceric acid, and cystathionine, which might be useful markers for monitoring the TB treatment course. Furthermore, our research may provide experimental data to develop potential biomarkers in the TB treatment course.

Metabolomics reveals potential plateau adaptability by regulating inflammatory response and oxidative stress-related metabolism and energy metabolism pathways in yak

  • Huang, Meizhou;Zhang, Xin;Yan, Wenjun;Liu, Jingjing;Wang, Hui
    • Journal of Animal Science and Technology
    • /
    • v.64 no.1
    • /
    • pp.97-109
    • /
    • 2022
  • Species are facing strong selection pressures to adapt to inhospitable high-altitude environments. Yaks are a valuable species and an iconic symbol of the Qinghai-Tibet Plateau. Extensive studies of high-altitude adaptation have been conducted, but few have focused on metabolism. In the present study, we determined the differences in the serum metabolomics between yaks and the closely related species of low-altitude yellow cattle and dairy cows. We generated high-quality metabolite profiling data for 36 samples derived from the three species, and a clear separation trend was obtained between yaks and the other animals from principal component analysis. In addition, we identified a total of 63 differentially expressed metabolites among the three species. Functional analysis revealed that differentially expressed metabolites were related to the innate immune activation, oxidative stress-related metabolism, and energy metabolism in yaks, which indicates the important roles of metabolites in high-altitude adaptation in yaks. The results provide new insights into the mechanism of adaptation or acclimatization to high-altitude environments in yaks and hypoxia-related diseases in humans.

Profiling of the leaves and stems of Curcuma longa using LC-ESI-MS and HPLC analysis

  • Gia Han Tran;Hak-Dong Lee;Sun-Hyung Kim;Seok Lee;Sanghyun Lee
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.338-344
    • /
    • 2023
  • Curcuma longa is a plant belonging to the genus Curcuma and is distributed across various Asian regions. This plant is widely known for its rhizomes, which possess a variety of pharmacological properties. However, although the leaves and stems of this plant also contain several health-promoting secondary metabolites, very few studies have characterized these compounds. Therefore, our study sought to quantify the secondary metabolites from the leaves and stems of Curcuma longa L. (LSCL) using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) and high-performance liquid chromatography (HPLC). Our LC-ESI-MS analyses detected twenty-one phenolic compounds in the LSCL, among which fifteen compounds were detected via HPLC analysis. Four compounds, namely vanillic acid (0.129 mg/g), p-coumaric acid (0.431 mg/g), 4-methylcatechol (0.199 mg/g), and afzelin (0.074 mg/g) were then quantified. These findings suggest that LSCL is rich in secondary metabolites and holds potential as a valuable resource for the development of functional and nutritional supplements in the future.

Metabolic Profiling and Biological Activities of Bioactive Compounds Produced by Pseudomonas sp. Strain ICTB-745 Isolated from Ladakh, India

  • Kama, Ahmed;Shaik, Anver Basha;Kumar, C. Ganesh;Mongolla, Poornima;Rani, P. Usha;Krishna, K.V.S. Rama;Mamidyala, Suman Kumar;Joseph, Joveeta
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.69-79
    • /
    • 2012
  • In an ongoing survey of the bioactive potential of microorganisms from Ladakh, India, the culture medium of a bacterial strain of a new Pseudomonas sp., strain ICTB-745, isolated from an alkaline soil sample collected from Leh, Ladakh, India, was found to contain metabolites that exhibited broad-spectrum antimicrobial and biosurfactant activities. Bioactivity-guided purification resulted in the isolation of four bioactive compounds. Their chemical structures were elucidated by $^1H$ and $^{13}C$ NMR, 2D-NMR (HMBC, HSQC, $^1H$,$^1H$-COSY, and DEPT-135), FT-IR, and mass spectroscopic methods, and were identified as 1-hydroxyphenazine, phenazine-1-carboxylic acid (PCA), rhamnolipid-1 (RL-1), and rhamnolipid-2 (RL-2). These metabolites exhibited various biological activities like antimicrobial and efficient cytotoxic potencies against different human tumor cell lines such as HeLa, HepG2, A549, and MDA MB 231. RL-1 and RL-2 exhibited a dose-dependent antifeedant activity against Spodoptera litura, producing about 82.06% and 73.66% antifeedant activity, whereas PCA showed a moderate antifeedant activity (63.67%) at 60 ${\mu}g/cm^2$ area of castor leaf. Furthermore, PCA, RL-1, and RL-2 exhibited about 65%, 52%, and 47% mortality, respectively, against Rhyzopertha dominica at 20 ${\mu}g/ml$. This is the first report of rhamnolipids as antifeedant metabolites against Spodoptera litura and as insecticidal metabolites against Rhyzopertha dominica. The metabolites from Pseudomonas sp. strain ICTB-745 have interesting potential for use as a biopesticide in pest control programs.

Profiling Metabolites Expressed Corn Root Under Waterlogging

  • Jae-Han Son;Young-Sam Go;Hwan-Hee Bae;Kyeong-Min Kang;Beom-Young Son;Seonghyu Shin;Tae-Wook Jung
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.289-289
    • /
    • 2022
  • Waterlogging tolerance of corn is one of the important factor for cultivate in paddy soil condition to increase cultivation area and self-sufficiency of corn in Korea. In order to develop elite waterlogging tolerance corn, the new corn lines bred by crossing wild corn, Teosinte, and cultivated corn inbred lines. Five accessions among the 2 species, Zea mays sub spp. mexicana and Zea mays spp. parviglumis, of 81 Teosinte were selected through the waterlogging treatment. The waterlogging treatments were implemented for 7 days at the seedling(V3) stage. The inbred lines were developed by crossing 5 teosinte accessions and cultivated corn lines and they were estimated waterlogging tolerance. It was screened and analyzed the metabolites extracted from roots of 19KT-32(KS141 × teosinte) that was treated waterlogging. We selected 8 of 180 metabolites like as γ-aminobutyric acid(GABA), putrescine, citrulline, Gly, and Ala that expression was remarkably changed over 2.5-times, 7 metabolites increased and 1 metabolite decreased in waterlogging, respectively. Glutamate decarboxylase(GAD) catalyzing GABA accumulation gene have 10 haplotypes, and exon1 was highly conserved, but identified to 135 SNPs after the first intron. Among the 135 SNPs, the number of transversion mutations (52) surpassed the number of transition mutations (38). Most of metabolites were related to abiotic stress in plant that it regulated to pH, osmotic pressure K+/Ca++ and ATPase activity. We are analyzing the association using these results for increase breeding efficiency.

  • PDF

Unraveling dynamic metabolomes underlying different maturation stages of berries harvested from Panax ginseng

  • Lee, Mee Youn;Seo, Han Sol;Singh, Digar;Lee, Sang Jun;Lee, Choong Hwan
    • Journal of Ginseng Research
    • /
    • v.44 no.3
    • /
    • pp.413-423
    • /
    • 2020
  • Background: Ginseng berries (GBs) show temporal metabolic variations among different maturation stages, determining their organoleptic and functional properties. Methods: We analyzed metabolic variations concomitant to five different maturation stages of GBs including immature green (IG), mature green (MG), partially red (PR), fully red (FR), and overmature red (OR) using mass spectrometry (MS)-based metabolomic profiling and multivariate analyses. Results: The partial least squares discriminant analysis score plot based on gas chromatography-MS datasets highlighted metabolic disparity between preharvest (IG and MG) and harvest/postharvest (PR, FR, and OR) GB extracts along PLS1 (34.9%) with MG distinctly segregated across PLS2 (18.2%). Forty-three significantly discriminant primary metabolites were identified encompassing five developmental stages (variable importance in projection > 1.0, p < 0.05). Among them, most amino acids, organic acids, 5-C sugars, ethanolamines, purines, and palmitic acid were detected in preharvest GB extracts, whereas 6-C sugars, phenolic acid, and oleamide levels were distinctly higher during later maturation stages. Similarly, the partial least squares discriminant analysis based on liquid chromatography-MS datasets displayed preharvest and harvest/postharvest stages clustered across PLS1 (11.1 %); however, MG and PR were separated from IG, FR, and OR along PLS2 (5.6 %). Overall, 24 secondary metabolites were observed significantly discriminant (variable importance in projection > 1.0, p < 0.05), with most displaying higher relative abundance during preharvest stages excluding ginsenosides Rg1 and Re. Furthermore, we observed strong positive correlations between total flavonoid and phenolic metabolite contents in GB extracts and antioxidant activity. Conclusion: Comprehending the dynamic metabolic variations associated with GB maturation stages rationalize their optimal harvest time per se the related agroeconomic traits.

Mass Spectrometry-Based Metabolite Profiling and Bacterial Diversity Characterization of Korean Traditional Meju During Fermentation

  • Lee, Su Yun;Kim, Hyang Yeon;Lee, Sarah;Lee, Jung Min;Muthaiya, Maria John;Kim, Beom Seok;Oh, Ji Young;Song, Chi Kwang;Jeon, Eun Jung;Ryu, Hyung Seok;Lee, Choong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.11
    • /
    • pp.1523-1531
    • /
    • 2012
  • The metabolite profile of meju during fermentation was analyzed using mass spectrometry techniques, including GC-MS and LC-MS, and the bacterial diversity was characterized. The relative proportions of bacterial strains indicated that lactic acid bacteria, such as Enterococcus faecium and Leuconostoc lactis, were the dominant species. In partial least-squares discriminate analysis (PLS-DA), the componential changes, which depended on fermentation, proceeded gradually in both the GC-MS and LC-MS data sets. During fermentation, lactic acid, amino acids, monosaccharides, sugar alcohols, and isoflavonoid aglycones (daidzein and genistein) increased, whereas citric acid, glucosides, and disaccharides decreased. MS-based metabolite profiling and bacterial diversity characterization of meju demonstrated the changes in metabolites according to the fermentation period and provided a better understanding of the correlation between metabolites and bacterial diversity.