DOI QR코드

DOI QR Code

Metabolic Profiling and Biological Activities of Bioactive Compounds Produced by Pseudomonas sp. Strain ICTB-745 Isolated from Ladakh, India

  • Kama, Ahmed (Chemical Biology Laboratory, Division of Organic Chemistry, Indian Institute of Chemical Technology) ;
  • Shaik, Anver Basha (Chemical Biology Laboratory, Division of Organic Chemistry, Indian Institute of Chemical Technology) ;
  • Kumar, C. Ganesh (Chemical Biology Laboratory, Division of Organic Chemistry, Indian Institute of Chemical Technology) ;
  • Mongolla, Poornima (Chemical Biology Laboratory, Division of Organic Chemistry, Indian Institute of Chemical Technology) ;
  • Rani, P. Usha (Biology Division, Indian Institute of Chemical Technology) ;
  • Krishna, K.V.S. Rama (Nuclear Magnetic Resonance Centre, Indian Institute of Chemical Technology) ;
  • Mamidyala, Suman Kumar (Chemical Biology Laboratory, Division of Organic Chemistry, Indian Institute of Chemical Technology) ;
  • Joseph, Joveeta (Chemical Biology Laboratory, Division of Organic Chemistry, Indian Institute of Chemical Technology)
  • Received : 2011.05.06
  • Accepted : 2011.09.16
  • Published : 2012.01.28

Abstract

In an ongoing survey of the bioactive potential of microorganisms from Ladakh, India, the culture medium of a bacterial strain of a new Pseudomonas sp., strain ICTB-745, isolated from an alkaline soil sample collected from Leh, Ladakh, India, was found to contain metabolites that exhibited broad-spectrum antimicrobial and biosurfactant activities. Bioactivity-guided purification resulted in the isolation of four bioactive compounds. Their chemical structures were elucidated by $^1H$ and $^{13}C$ NMR, 2D-NMR (HMBC, HSQC, $^1H$,$^1H$-COSY, and DEPT-135), FT-IR, and mass spectroscopic methods, and were identified as 1-hydroxyphenazine, phenazine-1-carboxylic acid (PCA), rhamnolipid-1 (RL-1), and rhamnolipid-2 (RL-2). These metabolites exhibited various biological activities like antimicrobial and efficient cytotoxic potencies against different human tumor cell lines such as HeLa, HepG2, A549, and MDA MB 231. RL-1 and RL-2 exhibited a dose-dependent antifeedant activity against Spodoptera litura, producing about 82.06% and 73.66% antifeedant activity, whereas PCA showed a moderate antifeedant activity (63.67%) at 60 ${\mu}g/cm^2$ area of castor leaf. Furthermore, PCA, RL-1, and RL-2 exhibited about 65%, 52%, and 47% mortality, respectively, against Rhyzopertha dominica at 20 ${\mu}g/ml$. This is the first report of rhamnolipids as antifeedant metabolites against Spodoptera litura and as insecticidal metabolites against Rhyzopertha dominica. The metabolites from Pseudomonas sp. strain ICTB-745 have interesting potential for use as a biopesticide in pest control programs.

Keywords

References

  1. Abalos, A., A. Pinazo, M. R. Infante, M. Casals, F. Garcia, and A. Manresa. 2001. Physicochemical and antimicrobial properties of new rhamnolipids by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir 17: 1367-1371. https://doi.org/10.1021/la0011735
  2. Abbott, W. S. 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18: 265-267.
  3. Abdel-Mawgoud, A. M., F. Lepine, and E. Deziel. 2010. Rhamnolipids: Diversity of structures, microbial origins and roles. Appl. Microbiol. Biotechnol. 86: 1323-1336. https://doi.org/10.1007/s00253-010-2498-2
  4. Abivardi, C. and G. Benz. 1984. Tests with extracts of 21 medicinal plants for anti-feedant activity against larvae of Pteris brassicae L. (Lepteridae). Bull. Soc. Entomol. Swisse 57: 383-392.
  5. Bernays, E. A., S. Oppenheimer, R. F. Chapman, H. Kwon, and F. Gould. 2000. Taste sensitivity of insect herbivores to deterrents is greater in specialists than in generalists: A behavioural test of the hypothesis with two closely related caterpillars. J. Chem. Ecol. 26: 547-563. https://doi.org/10.1023/A:1005430010314
  6. Bush, K., P. R. Henry, M. S. Woehleke, W. H. Trejo, and D. S. Slusarchyk. 1984. Phenacein - an angiotensin-converting enzyme inhibitor produced by a streptomycete. J. Antibiot. (Tokyo) 37: 1308-1312. https://doi.org/10.7164/antibiotics.37.1308
  7. Carpinella, M. C., M. T. Defago, G. Valladares, and S. M. Palacios. 2003. Antifeedant and insecticide properties of a limonoid from Melia azedarach (Meliaceae) with potential use for pest management. J. Agric. Food Chem. 51: 369-374. https://doi.org/10.1021/jf025811w
  8. Chandrasekaran, E. V. and J. N. Bemiller. 1980. Constituent analyses of glycosamino-glycans, pp. 89-96. In R. L. Whistler (ed.). Methods in Carbohydrate Chemistry. Academic Press Inc., New York.
  9. Chin-A-Woeng, T. F. C., G. V. Bloemberg, and B. J. J. Lugtenberf. 2003. Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol. 157: 503-523. https://doi.org/10.1046/j.1469-8137.2003.00686.x
  10. Cooper, D. G. and B. G. Goldenberg. 1987. Surface-active agents from two Bacillus species. Appl. Environ. Microbiol. 53: 224-229.
  11. Degiorgi, C. F., R. O. Fernandez, and R. A. Pizarro. 1996. Ultraviolet-B lethal damage on Pseudomonas aeruginosa. Curr. Microbiol. 33: 141-146. https://doi.org/10.1007/s002849900090
  12. Environmental Protection Agency Federal Register. 2004. Rhamnolipid biosurfactant: Exemption from the requirement of a tolerance. 69: 16796-16800.
  13. Fernandez, R. O. and R. A. Pizarro. 1996. Lethal effect induced in Pseudomonas aeruginosa exposed to ultraviolet-A radiation. Photochem. Photobiol. 64: 334-339. https://doi.org/10.1111/j.1751-1097.1996.tb02467.x
  14. Ganassi, S., A. De Cristofaro, P. Grazioso, C. Altomare, A. Logrieco, and M. A. Sabatini. 2007. Detection of fungal metabolites of various Trichoderma species by the aphid Schizaphis graminum. Entomol. Exp. Appl. 122: 77-86. https://doi.org/10.1111/j.1570-7458.2006.00494.x
  15. Granousky, T. A. 1997. Stored product pests, pp. 635-728. In A. Mallis, S. A. Hedges, and D. Moreland (eds.). Handbook of Pest Control, 8th Ed. Mallis Handbook and Technical Training Co., Cleveland, OH.
  16. Gurusiddaiah, S., D. M. Weller, A. Sarkar, and R. J. Cook. 1986. Characterization of an antibiotic produced by a strain of Pseudomonas fluorescens inhibitory to Gaeumannomyces graminis var. tritici and Pythium spp. Antimicrob. Agents Chemother. 29: 488-495. https://doi.org/10.1128/AAC.29.3.488
  17. Hasan, M. M. and C. Reichmuth. 2004. Relative toxicity of phosphine against the bean bruchid Acanthoscelides obtectus (Say) (Col., Bruchidae). J. Appl. Entomol. 128: 332-336. https://doi.org/10.1111/j.1439-0418.2004.00850.x
  18. Haynes, W. C., F. H. Stodola, J. M. Locke, T. G. Pridham, H. F. Conway, B. E. Sohns, and R. W. Jackson. 1956. Pseudomonas aureofaciens Kluyver and phenazine-$\alpha$-carboxylic acid, its characteristic pigments. J. Bacteriol. 72: 412-417.
  19. He, L., Y.-Q. Xu, and X.-H. Zhang. 2008. Medium factor optimization and fermentation kinetics for phenazine-1-carboxylic acid production by Pseudomonas sp. M18G. Biotechnol. Bioeng. 100: 250-259. https://doi.org/10.1002/bit.21767
  20. Holler, U., A. D. Wright, G. F. Matthee, G. M. Konig, S. Draeger, H. J. Aust, and B. Schulz. 2000. Fungi from marine sponges: Diversity, biological activity and secondary metabolites. Mycol. Res. 104: 1354-1365. https://doi.org/10.1017/S0953756200003117
  21. Isono, K., K. Anzai, and S. Suzuki. 1958. Tubermycins A and B, new antibiotics. J. Antibiot. (Tokyo) 11: 264-267.
  22. Joshi, P. K., G. S. Rawat, H. Padilya, and P. S. Roy. 2006. Biodiversity characterization in Nubra Valley, Ladakh with special reference to plant resource conservation and bioprospecting. Biodivers. Conserv. 15: 4253-4270. https://doi.org/10.1007/s10531-005-3578-y
  23. Kavitha, K., S. Mathiyazhagan, V. Sendhilvel, S. Nakkeeran, G. Chandrasekar, and W. G. D. Fernando. 2005. Broad spectrum action of phenazine against active and dormant structures of fungal pathogens and root knot nematode. Arch. Phytopathol. Plant Protect. 38: 69-76. https://doi.org/10.1080/03235400400008408
  24. Kim, S. K., Y. C. Kim, S. Lee, J. C. Kim, M. Y. Yun, and I. S. Kim. 2011. Insecticidal activity of rhamnolipid isolated from Pseudomonas sp. EP-3 against green peach aphid (Myzus persicae). J. Agric. Food Chem. 59: 934-938. https://doi.org/10.1021/jf104027x
  25. Kumar, C. G. and S. K. Mamidyala. 2011. Extracellular synthesis of silver nanoparticles using culture supernatant of Pseudomonas aeruginosa. Colloids Surf. B Biointerfaces 84: 462-466. https://doi.org/10.1016/j.colsurfb.2011.01.042
  26. Kumar, C. G., M. Mongolla, A. Basha, J. Joseph, U. V. M. Sarma, and A. Kamal. 2011. Decolorization and biotransformation of triphenylmethane dye, methyl violet, by Aspergillus sp. isolated from Ladakh, India. J. Microbiol. Biotechnol. 21: 267-273.
  27. Lin, Y., X. Wu, S. Feng, G. Jiang, J. Luo, S. Zhou, et al. 2001. Five unique compounds: Xyloketales from mangrove fungus Xylaria sp. from the South China Sea coast. J. Org. Chem. 66: 6252-6256. https://doi.org/10.1021/jo015522r
  28. Madigan, M. T. and B. L. Marrs. 1997. Extremophiles. Sci. Am. 276: 82-87.
  29. Mata-Sandoval, J., J. Karns, and A. Torrents. 1999. Highperformance liquid chromatography method for the characterization of rhamnolipids mixture produced by Pseudomonas aeruginosa UG2 on corn oil. J. Chromatogr. 864: 211-220. https://doi.org/10.1016/S0021-9673(99)00979-6
  30. Matthews, G. A. 1993. Insecticide application in stores, pp. 305-315. In G. A. Matthews and E. C. Hislop (eds.). Application Technology for Crop Protection. CAB International, Wallingford, UK.
  31. Mendel, M. J., A. R. Alford, and M. D. Bentley. 1991. A comparison of the effects of limonin on Colorado potato beetle, Leptinotarsa decemlineata, and fall armyworm, Spodoptera frugiperda, larval feeding. Entomol. Exp. Appl. 58: 191-194. https://doi.org/10.1111/j.1570-7458.1991.tb01467.x
  32. Monteiro, S. A., G. L. Sassaki, L. M. de Souza, J. A. Meira, J. M. de Araujo, D. A. Mitchell, et al. 2007. Molecular and structural characterization of the biosurfactant produced by Pseudomonas aeruginosa DAUPE 614. Chem. Phys. Lipids 147: 1-13. https://doi.org/10.1016/j.chemphyslip.2007.02.001
  33. Paul, V. J., M. P. Puglisi, and R. R. Williams. 2006. Marine chemical ecology. Nat. Prod. Rep. 23: 153-180. https://doi.org/10.1039/b404735b
  34. Phoebe, C. H. Jr., J. Combie, F. G. Albert, K. Van Tran, J. Cabrera, H. J. Correira, et al. 2001. Extremophilic organisms as an unexplored source for antifungal compounds. J. Antibiot. (Tokyo) 54: 56-65. https://doi.org/10.7164/antibiotics.54.56
  35. Quesada-Moraga, E., J. A. Carrasco-Diaz, and C. Santiago- Alvarez. 2006. Insecticidal and antifeedant activities of protein secreted by entomopathogenic fungi against Spodoptera littoralis (Lep, Noctuidae). J. Appl. Entomol. 130: 442-452. https://doi.org/10.1111/j.1439-0418.2006.01079.x
  36. Rimando, A. M. and S. O. Duke. 2006. Natural products for pest management, pp. 2-21. ACS Symposium Series. American Chemical Society, Washington, DC.
  37. Romer, A. 1982. 1H NMR spectra of substituted phenazines. Org. Magn. Reson. 19: 66-68. https://doi.org/10.1002/mrc.1270190203
  38. Sadek, M. M. 2003. Antifeedant and toxic activity of Adhatoda vasica leaf extract against Spodoptera littoralis (Lep., Noctuidae). J. Appl. Entomol. 127: 396-404. https://doi.org/10.1046/j.1439-0418.2003.00775.x
  39. Schmutterrer, H. 1995. The Neem Tree Azadirachta indica A. Juss. and Other Meliaceous Plants. VCH Publishers, Weinheim, Germany.
  40. Sheppard, J. D. and C. N. Mulligan, 1987. The production of surfactin by Bacillus subtilis grown on peat hydrolysate. Appl. Microbiol. Biotechnol. 27: 110-116.
  41. Smitka, T. A., R. H. Bunge, J. H. Wilton, G. C. Hokanson, J. C. French, H. Cun-Heng, and J. Clardy. 1986. PD 166, 152, a novel phenazine antitumor antibiotic. Discovery, fermentation, culture characterization and biological activity. J. Antibiot. (Tokyo) 39: 192-197. https://doi.org/10.7164/antibiotics.39.192
  42. Strobel, G. A. 2000. Microbial gifts from rain forests. Can. J. Plant Pathol. 24: 14-20.
  43. Talukder, F. A. and P. E. Howse. 1994. Laboratory evaluation of toxic repellent properties of the pithsaj tree, Aphanamixis polystachya Wall and Parker against Sitophilus oryzae (L.). Int. J. Pest Manage. Sci. 40: 274-279. https://doi.org/10.1080/09670879409371897
  44. Tanaka, Y. and S. Omura. 1993. Agroactive compounds of microbial origin. Annu. Rev. Microbiol. 47: 57-87. https://doi.org/10.1146/annurev.mi.47.100193.000421
  45. Usha Rani, P. and P. Rajasekharreddy. 2010. Insecticidal activity of (2n-octyl-cyclo-prop-1-enyl)-octanoic acid (I) against three Coleopteran stored product insects from Sterculia foetida (L.). J. Pest Sci. 83: 273-279. https://doi.org/10.1007/s10340-010-0295-4
  46. Valanarasu, M., P. Kannan, S. Ezhilvendan, G. Ganesan, S. Ignacimuthu, and P. Agastian. 2010. Antifungal and antifeedant activities of extracellular product of Streptomyces spp. ERI-04 isolated from Western Ghats of Tamil Nadu. J. Mycol. Med. 20: 290-297. https://doi.org/10.1016/j.mycmed.2010.09.001
  47. Vey, A., R. Hoagland, and T. M. Butt. 2001. Toxic metabolites of fungal biocontrol agents, pp. 311-340. In T. M. Butt, C. Jacskon, and N. Magan (eds.). Fungi as Biocontrol Agents. CAB International, Wallingford, UK.
  48. Vichai, V. and K. Kirtikara. 2006. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 1: 1112-1116. https://doi.org/10.1038/nprot.2006.179
  49. Wang, Y. and D. K. Newman. 2008. Redox reactions of phenazine antibiotics with ferric (hydr)oxides and molecular oxygen. Environ. Sci. Technol. 42: 2380-2386. https://doi.org/10.1021/es702290a
  50. Wang, X., L. Gong, S. Liang, X. Han, C. Zhu, and Y. Li. 2005. Algicidal activity of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa. Harmful Algae 4: 433-443. https://doi.org/10.1016/j.hal.2004.06.001
  51. Wildman, H. 1995. Influence of habitation on the physiological and metabolic diversity of fungi. Can. J. Bot. 73: s907-s916. https://doi.org/10.1139/b95-338
  52. Wood, R. K. S. and M. J. May. 1989. Biological Control of Pests, Pathogens and Weeds: Development and Prospects. The Royal Society, London.

Cited by

  1. Oral insecticidal activity of plant‐associated pseudomonads vol.15, pp.3, 2013, https://doi.org/10.1111/j.1462-2920.2012.02884.x
  2. Promise for plant pest control: root-associated pseudomonads with insecticidal activities vol.4, pp.None, 2012, https://doi.org/10.3389/fpls.2013.00287
  3. Rhamnolipids elicit the same cytotoxic sensitivity between cancer cell and normal cell by reducing surface tension of culture medium vol.98, pp.24, 2012, https://doi.org/10.1007/s00253-014-6065-0
  4. Approaches in fostering quality parameters for medicinal botanicals in the Indian context vol.46, pp.4, 2012, https://doi.org/10.4103/0253-7613.135946
  5. Rhamnolipids: solution against Aedes aegypti ? vol.6, pp.None, 2012, https://doi.org/10.3389/fmicb.2015.00088
  6. Microbial derived surface active compounds: properties and screening concept vol.31, pp.7, 2015, https://doi.org/10.1007/s11274-015-1866-6
  7. Isolation of phenazine 1,6-di-carboxylic acid from Pseudomonas aeruginosa strain HRW.1-S3 and its role in biofilm-mediated crude oil degradation and cytotoxicity against bacterial and cancer cells vol.99, pp.20, 2012, https://doi.org/10.1007/s00253-015-6707-x
  8. Phenazine-1-carboxamide, an Extrolite Produced by Pseudomonas aeruginosa Strain (CGK-KS-1) Isolated from Ladakh and India, and its Evaluation Against Various Xanthomonas spp. vol.45, pp.3, 2012, https://doi.org/10.4014/mbl.1704.04004
  9. Biosurfactants produced by Scheffersomyces stipitis cultured in sugarcane bagasse hydrolysate as new green larvicides for the control of Aedes aegypti , a vector of neglected tropical diseases vol.12, pp.11, 2012, https://doi.org/10.1371/journal.pone.0187125
  10. Molecular Mechanisms of Tryptophan-Tyrosine Nanostructures Formation and their Influence on PC-12 Cells vol.1, pp.5, 2018, https://doi.org/10.1021/acsabm.8b00121
  11. High Di-rhamnolipid Production Using Pseudomonas aeruginosa KT1115, Separation of Mono/Di-rhamnolipids, and Evaluation of Their Properties vol.7, pp.None, 2012, https://doi.org/10.3389/fbioe.2019.00245
  12. Novel combination of a biosurfactant with entomopathogenic fungi enhances efficacy against Bemisia whitefly vol.75, pp.11, 2012, https://doi.org/10.1002/ps.5458
  13. Characterization and Cytotoxicity of Pseudomonas Mediated Rhamnolipids Against Breast Cancer MDA-MB-231 Cell Line vol.9, pp.None, 2021, https://doi.org/10.3389/fbioe.2021.761266
  14. Multifaceted interactions between the pseudomonads and insects: mechanisms and prospects vol.203, pp.5, 2012, https://doi.org/10.1007/s00203-021-02230-9