• Title/Summary/Keyword: Metabolism.

Search Result 7,298, Processing Time 0.029 seconds

13-Hydroxy-9Z,11E,15E-octadecatrienoic Acid from the Leaves of Cucurbita moschata

  • Bang, Myun-Ho;Han, Jae-Taek;Kim, Hae-Yeong;Park, Young-Doo;Park, Chang-Ho;Lee, Kang-Ro;Baek, Nam-In
    • Archives of Pharmacal Research
    • /
    • v.25 no.4
    • /
    • pp.438-440
    • /
    • 2002
  • A new unsaturated hydroxy fatty acid was isolated from the leaves of Cucurbita moschata through repeated silica gel column chromatography and chemical methods. The structure of the new fatty acid was determined as 13-hydroxy-9, 11, 15-octadecatrienoic acid on the basis of several spectral data including 2D-NMR. The stererostructures of double bonds were determined to be 9Z, 11 E and 15E by coupling patterns of related proton signals in the $^1H-NMR$ and NOESY experiments.

Effect of Acetic Acid on Bacteriocin Production by Gram-Positive Bacteria

  • Ge, Jingping;Kang, Jie;Ping, Wenxiang
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1341-1348
    • /
    • 2019
  • Acetic acid is indirectly involved in cell center metabolism, and acetic acid metabolism is the core of central metabolism, affecting and regulating the production of bacteriocin. Bacteriocin is a natural food preservative that has been used in the meat and dairy industries and winemaking. In this paper, the effects of acetic acid on bacteriocin produced by Gram-positive bacteria were reviewed. It was found that acetic acid in the undissociated state can diffuse freely through the hydrophobic layer of the membrane and dissociate, affecting the production, yield, and activity of bacteriocin. In particular, the effect of acetic acid on cell membranes is summarized. The link between acetic acid metabolism, quorum sensing, and bacteriocin production mechanisms is also highlighted.

Transient Receptor Potential Channels and Metabolism

  • Dhakal, Subash;Lee, Youngseok
    • Molecules and Cells
    • /
    • v.42 no.8
    • /
    • pp.569-578
    • /
    • 2019
  • Transient receptor potential (TRP) channels are nonselective cationic channels, conserved among flies to humans. Most TRP channels have well known functions in chemosensation, thermosensation, and mechanosensation. In addition to being sensing environmental changes, many TRP channels are also internal sensors that help maintain homeostasis. Recent improvements to analytical methods for genomics and metabolomics allow us to investigate these channels in both mutant animals and humans. In this review, we discuss three aspects of TRP channels, which are their role in metabolism, their functional characteristics, and their role in metabolic syndrome. First, we introduce each TRP channel superfamily and their particular roles in metabolism. Second, we provide evidence for which metabolites TRP channels affect, such as lipids or glucose. Third, we discuss correlations between TRP channels and obesity, diabetes, and mucolipidosis. The cellular metabolism of TRP channels gives us possible therapeutic approaches for an effective prophylaxis of metabolic syndromes.

Simultaneous determination of sildenafil and its active metabolite in human plasma using LC/MS/MS

  • Ji, Hye-Young;Kim, Sook-Jin;Lee, Hong-Il;Lee, Seung-Seok;Lee, Hye-Sook
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.402.1-402.1
    • /
    • 2002
  • The LC/MS/MS method for the simultaneous determination of sildenafil and its active metabolite N-demethylsildenafil in human plama was developed. Sildenafil. its active metabolite and the internal standard. DA-8159 were extracted form human plasma by liquid-liquid partitioning. A reverse-phase HPLC separation was performed on Luna phenylhexyl column with the mixture of acetonitrile-5 mM ammonium formate (55:45. v/v) as mobile phase. (omitted)

  • PDF

Mass spectrometry-based approaches to explore metabolism regulating ferroptosis

  • Nguyen, Chi Thi Ngoc;Kim, Seon Min;Kang, Yun Pyo
    • BMB Reports
    • /
    • v.55 no.9
    • /
    • pp.413-416
    • /
    • 2022
  • Ferroptosis is a type of programmed cell death distinct from apoptosis or necroptosis. Ferroptosis is well characterized by an iron-dependent accumulation of lipid peroxides and disruption of cellular membrane integrity. Many metabolic alterations can prevent or accelerate ferroptosis induction. Recent advances in analytical techniques of mass spectrometry have allowed high-throughput analysis of metabolites known to be critical for understanding ferroptosis regulatory metabolism. In this review, we introduce mass spectrometry-based analytical methods contributing to recent discovery of various metabolic pathways regulating ferroptosis, focusing on cysteine metabolism, antioxidant metabolism, and poly-unsaturated fatty acid metabolism.

Integrative understanding of immune-metabolic interaction

  • Im, Seonyoung;Kim, Hawon;Jeong, Myunghyun;Yang, Hyeon;Hong, Jun Young
    • BMB Reports
    • /
    • v.55 no.6
    • /
    • pp.259-266
    • /
    • 2022
  • Recent studies have revealed that the immune system plays a critical role in various physiological processes beyond its classical pathogen control activity. Even under a sterile condition, various cells and tissues can utilize the immune system to meet a specific demand for proper physiological functions. Particularly, a strong link between immunity and metabolism has been identified. Studies have identified the reciprocal regulation between these two systems. For example, immune signals can regulate metabolism, and metabolism (cellular or systemic) can regulate immunity. In this review, we will summarize recent findings on this reciprocal regulation between immunity and metabolism, and discuss potential biological rules behind this interaction with integrative perspectives.

RNA Metabolism in T Lymphocytes

  • Jin Ouk Choi;Jeong Hyeon Ham;Soo Seok Hwang
    • IMMUNE NETWORK
    • /
    • v.22 no.5
    • /
    • pp.39.1-39.18
    • /
    • 2022
  • RNA metabolism plays a central role in regulating of T cell-mediated immunity. RNA processing, modifications, and regulations of RNA decay influence the tight and rapid regulation of gene expression during T cell phase transition. Thymic selection, quiescence maintenance, activation, differentiation, and effector functions of T cells are dependent on selective RNA modulations. Recent technical improvements have unveiled the complex crosstalk between RNAs and T cells. Moreover, resting T cells contain large amounts of untranslated mRNAs, implying that the regulation of RNA metabolism might be a key step in controlling gene expression. Considering the immunological significance of T cells for disease treatment, an understanding of RNA metabolism in T cells could provide new directions in harnessing T cells for therapeutic implications.

LC-MS-based metabolomic analysis of serum and livers from red ginseng-fed rats

  • Kim, Hyun-Jin;Cho, Chang-Won;Hwang, Jin-Taek;Son, Nari;Choi, Ji Hea;Shim, Gun-Sub;Han, Chan-Kyu
    • Journal of Ginseng Research
    • /
    • v.37 no.3
    • /
    • pp.371-378
    • /
    • 2013
  • Serum and liver metabolites in rats fed red ginseng (RG) were analyzed by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. The mass data were analyzed by partial least squares-discriminant analysis (PLS-DA) to discriminate between control and RG groups and identify metabolites contributing to this discrimination. The RG group was clearly separated from the control group on PLS-DA scores plot for serum samples, but not liver samples. The major metabolites contributing to the discrimination included lipid metabolites (lysophosphatidylcholine, acyl-carnitine, and sphingosine), isoleucine, nicotinamide, and corticosterone in the serum; the blood levels of all but isoleucine were reduced by RG administration. Not all metabolites were positively correlated with the health benefits of RG. However, the blood levels of lysophosphatidylcholine, which stimulate various diseases, and long-chain acylcarnitines and corticosterone, which activate the stress response, were reduced by RG, suggesting long-term RG might relieve stress and prevent physiological and biological problems.

Vitamin B6 Deficiency, Genome Instability and Cancer

  • Wu, Xia-Yu;Lu, Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5333-5338
    • /
    • 2012
  • Vitamin B6 functions as a coenzyme in >140 enzymatic reactions involved in the metabolism of amino acids, carbohydrates, neurotransmitters, and lipids. It comprises a group of three related 3-hydroxy-2-methyl-pyrimidine derivatives: pyridoxine (PN), pyridoxal (PL), pyridoxamine (PM) and their phosphorylated derivatives [pyridoxal 5'-phosphate (PLP) and pyridoxamine 5'-phosphate (PMP)], In the folate metabolism pathway, PLP is a cofactor for the mitochondrial and cytoplasmic isozymes of serine hydroxymethyltransferase (SHMT2 and SHMT1), the P-protein of the glycine cleavage system, cystathionine ${\beta}$-synthase (CBS) and ${\gamma}$-cystathionase, and betaine hydroxymethyltransferase (BHMT), all of which contribute to homocysteine metabolism either through folate-mediated one-carbon metabolism or the transsulfuration pathway. Folate cofactors carry and chemically activate single carbons for the synthesis of purines, thymidylate and methionine. So the evidence indicates that vitamin B6 plays an important role in maintenance of the genome, epigenetic stability and homocysteine metabolism. This article focuses on studies of strand breaks, micronuclei, or chromosomal aberrations regarding protective effects of vitamin B6, and probes whether it is folate-mediated one-carbon metabolism or the transsulfuration pathway for vitamin B6 which plays critical roles in prevention of cancer and cardiovascular disease.