• 제목/요약/키워드: Metabolism Modification

검색결과 103건 처리시간 0.021초

Effects of Atorvastatin on the Pharmacokinetics of Nicardipine after Oral and Intravenous Administration in Rats

  • Choi, Jun-Shik;Ha, Sung-Il;Choi, Dong-Hyun
    • Biomolecules & Therapeutics
    • /
    • 제18권2호
    • /
    • pp.226-232
    • /
    • 2010
  • The aim of this study was to investigate the effect of atrovasatatin on the pharmacokinetics of nicardipine after oral and intravenous administration of nicardipine to rats. Nicardipine was administered orally (12 mg/kg) or intravenously (i.v., 4 mg/kg) without or with oral administration of atrovasatatin (0.3 or 1.0 mg/kg) to rats. The effect of atorvastatin on the P-glycoprotein (P-gp) as well as CYP3A4 activity was also evaluated. Atorvastatin inhibited CYP3A4 enzyme activity in a concentration-dependent manner with 50% inhibition concentration ($IC_{50}$) of 48 ${\mu}M$. Compared to the controls (nicardipine alone), the area under the plasma concentration-time curve (AUC) of nicardipine was significantly (1.0 mg/kg, p<0.05) greater by 16.8-45.4%, and the peak plasma concentration ($C_{max}$) was significantly (1.0 mg/kg, p<0.05) higher by 28.0% after oral administration of nicardipine with atorvastatin, respectively. Consequently, the relative bioavailability (R.B.) of nicardipine was increased by 1.17- to 1.45-fold and the absolute bioavailability (A.B.) of nicardipine with atrovasatatin was significantly greater by 16.7-20.9% compared to that of the controls (14.3%). Compared to the i.v. control, atrovasatatin did not significantly change pharmacokinetic parameters of i.v. administration nicardipine. The enhanced oral bioavailability of nicardipine by atorvastatin suggests that CYP3A subfamily-mediated metabolism were inhibited in the intestine and/or in the liver rather than P-gp-mediated efflux of nicardipine. Based on these results, modification of nicardipine of dosage regimen is required in the patients. Human studies are required to prove the above hypothesis.

Effect of metabolic imprinting on growth and development in piglets

  • Ryu, Jae-Hyoung;Lee, Yoo-Kyung;Cho, Sung-Back;Hwang, Ok-Hwa;Park, Sung-Kwon
    • 농업과학연구
    • /
    • 제43권1호
    • /
    • pp.72-79
    • /
    • 2016
  • It has long been known that nutritional and environmental influences during the early developmental period affect the biological mechanisms which determine animal metabolism. This phenomenon, termed 'metabolic imprinting', can cause subtle but long-lasting responses to prenatal and postnatal nutrition and even be passed onto the next generation. A large amount of research data shows that nutrient availability, in terms of quantity as well as quality, during the early developing stages can decrease the number of newborn piglets and their body weight and increase their susceptibility to death before weaning. However, investigation of potential mechanisms of 'the metabolic imprinting' effect have been scant. Therefore, it remains unknown which factors are responsible for embryonic and early postnatal nutrition and which factors are major determinants of body weight and number of new born piglets. Intrauterine undernutrition, for example, was studied using a rat model providing dams 50% restricted nutrients during pregnancy and the results showed significant decreases in birth weight of newborns. This response may be a characteristic of a subset of modulations in embryonic development which is caused by the metabolic imprinting. Underlying mechanisms of intrauterine undernutrition and growth retardation can be explained in part by epigenetics. Epigenetics modulate animal phenotypes without changes in DNA sequences. Epigenetic modifications include DNA methylation, chromatin modification and small non-coding RNA-associated gene silencing. Precise mechanisms must be identified at the morphologic, cellular, and molecular levels by using interdisciplinary nutrigenomics approaches to increase pig production. Experimental approaches for explaining these potential mechanisms will be discussed in this review.

Identification of Gene Expression Signatures in the Chicken Intestinal Intraepithelial Lymphocytes in Response to Herb Additive Supplementations

  • Won, Kyeong-Hye;Song, Ki-Duk;Park, Jong-Eun;Kim, Duk-Kyung;Na, Chong-Sam
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권10호
    • /
    • pp.1515-1521
    • /
    • 2016
  • Anethole and garlic have an immune modulatory effects on avian coccidiosis, and these effects are correlated with gene expression changes in intestinal epithelial lymphocytes (IELs). In this study, we integrated gene expression datasets from two independent experiments and investigated gene expression profile changes by anethole and garlic respectively, and identified gene expression signatures, which are common targets of these herbs as they might be used for the evaluation of the effect of plant herbs on immunity toward avian coccidiosis. We identified 4,382 and 371 genes, which were differentially expressed in IELs of chickens supplemented with garlic and anethole respectively. The gene ontology (GO) term of differentially expressed genes (DEGs) from garlic treatment resulted in the biological processes (BPs) related to proteolysis, e.g., "modification-dependent protein catabolic process", "proteolysis involved in cellular protein catabolic process", "cellular protein catabolic process", "protein catabolic process", and "ubiquitin-dependent protein catabolic process". In GO analysis, one BP term, "Proteolysis", was obtained. Among DEGs, 300 genes were differentially regulated in response to both garlic and anethole, and 234 and 59 genes were either up- or down-regulated in supplementation with both herbs. Pathway analysis resulted in enrichment of the pathways related to digestion such as "Starch and sucrose metabolism" and "Insulin signaling pathway". Taken together, the results obtained in the present study could contribute to the effective development of evaluation system of plant herbs based on molecular signatures related with their immunological functions in chicken IELs.

Purification and Reaction Mechanism of Rat Brain Succinic Semialdehyde Dehydrogenase

  • Kim, Kyu-Tae;Joo, Chung-No
    • BMB Reports
    • /
    • 제28권2호
    • /
    • pp.162-169
    • /
    • 1995
  • Rat brain succinic semialdehyde dehydrogenase (EC 1.2.1.24 SSADH) activity was detected in mitochondrial, cytosolic and microsomal fractions. Brain mitochondrial soluble SSADH was purified by ammonium sulfate precipitation, DEAE Sephacel, and 5'-AMP Sepharose 4B affinity chromatography. The purified enzyme was shown to consist of four identical subunits, and the molecular weight of a subunit was 55 kD. The $K_m$ for short chain aliphatic aldehydes and aromatic aldehydes were at the $10^{-3}M$ level but that for succinic semialdehyde was 2.2 ${\mu}M$. Either $NAD^+$ or $NADP^+$ can be used as a cofactor but the affinity for $NAD^+$ was 10 times higher than that for $NADP^+$. The brain cytosolic SSADH was also purified by ammonium sulfate precipitation, DEAE Sephacel, Blue Sepharose CL-6B and 5'-AMP Sepharose 4B affinity chromatography and its Km for short chain aliphatic aldehydes was at the $10^{-3}$ level but that for succinic semialdehyde was 3.3 ${\mu}M$. $NAD^+$ can be used as a cofactor for this enzyme. We suppose that both enzyme might participate in the oxidation of succinic semialdehyde, which is produced during GABA metabolism. The activity of both cytosolic and mitochondrial SSADH was markedly inhibited when the concentration of succinic semialdehyde was high. The reciprocal plot pattern of product inhibition and initial velocity indicated a sequential ordered mechanism for mitochondrial matrix SSADH. Chemical modification data suggested that amino acid residues such as cysteine, serine and lysine might participate in the SSADH reaction.

  • PDF

Biotransformation of Free Isoflavones by Bacillus Species Isolated from Traditional Cheonggukjang

  • Lim, Ji-Sun;Jang, Chan-Ho;Lee, In-Ae;Kim, Hyo-Jung;Lee, Choong-Hwan;Kim, Jeong-Hwan;Park, Chun-Seok;Kwon, Dae-Young;Lim, Jin-Kyu;Hwang, Young-Hyun;Kim, Jong-Sang
    • Food Science and Biotechnology
    • /
    • 제18권4호
    • /
    • pp.1046-1050
    • /
    • 2009
  • Our previous study showed that isoflavone profile of soybean undergoes a significant change during cheonggukjang preparation. In particular, the content of metabolite(s) with similar retention time to glycitein under the high performance liquid chromatography (HPLC) condition was significantly increased while the levels of genistein and its derivatives were notably lowered. Therefore, we hypothesized that genistein and its derivatives might be converted to genistein glucosides with similar elution time to glycitein. Our current data suggest that genistein and its derivatives are extensively metabolized into various compounds including genistein glycosides, but not glycitein or its derivatives, by Bacillus species isolated from traditional cheonggukjang. Some of daidzein was also converted into a derivative with shorter retention time by Bacillus amyloliquefaciens 51 and 86-1 but not by Bacillus subtilis 3-5 and 3-17. As metabolism of soy isoflavones, major health-promoting components in soy products, is widely variable depending upon Bacillus species, it is essential to select microorganism that minimizes the breakdown or modification of soy isoflavones in the process of fermented soy product manufacture.

Analysis of Hanwoo Loin Proteome by 2-D Gel Electrophoresis and Peptide Mass Fingerprinting

  • Lim, Jin-Kyu;Pyo, Jae-Hoon;Lee, Hwa-Jin;Jung, Il-Jung;Park, Young-Sik;Yeo, Young-Kuen;Kim, Jeong-Sang
    • Preventive Nutrition and Food Science
    • /
    • 제7권4호
    • /
    • pp.432-436
    • /
    • 2002
  • A proteomic map of Hanwoo loin was obtained using 2-D SDS-PAGE and mass spectrometric analysis: 27 bovine proteins plus 2 proteins having similarities to other mammal proteins out of 52 proteins analyzed. The identified proteins consisted of 50 % basic house keeping proteins involved in metabolism, 30% muscle proteins, and other miscellaneous proteins. Many proteins on the 2-D gel with different molecular weights and isoelectric points were identified as same proteins due to posttranslational modification. As many of the identified house keeping proteins showed the high sequence similarities to other mammal equivalent proteins, searching the mammal databases could confirm the annotation. The preliminary identification of the proteome in bovine loin tissue could reveal the functions of proteins at over 50 % of chance with high fidelities. Using the established loin proteome map, proteomic difference between 1 yr and 2 yr Hanwoo loin tissues were compared on 2D gel. Regardless of the difficulty normalizing protein concentrations and sample-to-sample variations, three unidentified proteins and myoglobin were selected as up-regulated proteins during the fat deposition period. This study contributes to a move thorough and holistic understanding of beef meat, helping to build the basis for future identification of new markers for good quality meat.

Epigenetic role of nuclear S6K1 in early adipogenesis

  • Yi, Sang Ah;Han, Jihoon;Han, Jeung-Whan
    • BMB Reports
    • /
    • 제49권8호
    • /
    • pp.401-402
    • /
    • 2016
  • S6K1 is a key regulator of cell growth, cell size, and metabolism. Although the role of cytosolic S6K1 in cellular processes is well established, the function of S6K1 in the nucleus remains poorly understood. Our recent study has revealed that S6K1 is translocated into the nucleus upon adipogenic stimulus where it directly binds to and phosphorylates H2B at serine 36. Such phosphorylation promotes EZH2 recruitment and subsequent histone H3K27 trimethylation on the promoter of its target genes including Wnt6, Wnt10a, and Wnt10b, leading to repression of their expression. S6K1-mediated suppression of Wnt genes facilitates adipogenic differentiation through the expression of adipogenic transcription factors PPARγ and Cebpa. White adipose tissues from S6K1-deficient mice consistently exhibit marked reduction in H2BS36 phosphorylation (H2BS36p) and H3K27 trimethylation (H3K27me3), leading to enhanced expression of Wnt genes. In addition, expression levels of H2BS36p and H3K27me3 are highly elevated in white adipose tissues from mice fed on high-fat diet or from obese humans. These findings describe a novel role of S6K1 as a transcriptional regulator controlling an epigenetic network initiated by phosphorylation of H2B and trimethylation of H3, thus shutting off Wnt gene expression in early adipogenesis.

Klebsiella aerogenes Urease로의 닉켈의 도입 (NICKEL INCORPORATION INTO Klebsiella aerogenes UREASE)

  • Lee, Mann-Hyung-
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1994년도 제2회 추계심포지움
    • /
    • pp.69-80
    • /
    • 1994
  • Although ureases play important roles in microbial nitrogen metabolism and in the pathogenesis of several human diseases, little is known of the mechanism of metallocenter biosynthesis in this Ni-Containing enzyme. Klebsiella aerogenes urease apo-protein was purified from cells grown in the absence of Ni. The purified apo-enzyme showed the same native molecular weight, charge, and subunit stoichiometry as the holo-enzyme. Chemical modification studies were consistent with histidinyl ligation of Ni. Apo-enzyme could not be activated by simple addition of Ni ions suggesting a requirement for a cellular factor. Deletion analysis showed that four accessory genes (ureD, ureE, ureF, and ureG) are necessary for the functional incorporation of the urease metallocenter. Whereas the $\Delta$ureD, $\Delta$ureF, and $\Delta$ureG mutants are inactive and their ureases lack Ni, the $\Delta$ureE mutants retain partial activity and their ureases possess corresponding lower levels of Ni. UreE and UreG peptides were identified by SDS-polyacrylamide gel comparisons of mutant and wild type cells and by N-terminal sequencing. UreD and UreF peptides, which are synthesized at ve교 low levels, were identified by using in vitro transcription/translation methods. Cotransformation of E. coli cells with the complementing plasmids confirmed that ureD and ureF gene products act in trans. UreE was purified and characterized. immunogold electron microscopic studies were used to localize UreE to the cytoplasm. Equilibrium dialysis studies of purified UreE with $^{63}$ NiC1$_2$ showed that it binds ~6 Ni in a specific manner with a $K_{d}$ of 9.6 $\pm$1.3 $\mu$M. Results from spectroscopic studies demonstrated that Ni ions are ligated by 5 histidinyl residues and a sixth N or O atom, consistent with participation of the polyhistidine tail at the carboxyl termini of the dimeric UreE in Ni binding. With these results and other known features of the urease-related gene products, a model for urease metallocenter biosynthesis is proposed in which UreE binds Ni and acts as a Ni donor to the urease apo-protein while UreG binds ATP and couples its Hydrolysis to the Ni incorporation process.ouples its Hydrolysis to the Ni incorporation process.s.

  • PDF

Ti-6Al-4V 합금에 2nd ATO 처리 후 플라즈마 전해 산화법에 의한 생체활성표면형성 (Formation of Bioactive Surface by PEO-treatment after 2nd ATO Technique of Ti-6Al-4V Alloy)

  • Lim, Sang-Gyu;Cho, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.74-74
    • /
    • 2018
  • Ti-6Al-4V alloys have been widely used as orthopedic materials because of their excellent corrosion resistance and mechanical properties. However, it does not bind directly to the bone, so it requires a surface modification. This problem can be solved by nanotube and micropore formation. Plasma electrolytic oxidation (PEO) treatment for micropore, which combines high-voltage spark and electrochemical oxidation, is a new way of forming a ceramic coating on light metals such as titanium and its alloys. This method has excellent reproducibility and can easily control the shape and size of the Ti alloy. In this study, formation of bioactive surface by PEO-treatment after $2^{nd}$ ATO technique of Ti-6Al-4V alloy was invesgated by various instrument. Nanotube oxide surface structure was formed on the surface by anodic oxidation treatment in 0.8 wt.% NaF and 1M $H_3PO_4$ electrolytes. After nanotube formation, nanotube layer was removed by ultrasonic cleaning. PEO-treatment was carried out at 280V for 3 minutes in the electrolytic solution containing the bioactive substance (Mg, Zn, Mn, Sr, and Si). The surface of Ti-6Al-4V alloy was observed by field emission scanning electron microscopy (FE-SEM, S-4800 Hitachi, Japan). An energy dispersive X-ray spectrometer (EDS, Inca program, Oxford, UK) was used to analyze the spectra of physiologically active Si, Mn, Mg, Zn, and Sr ions. The PEO film formed on the Ti-6Al-4V alloy surface was characterized using an X-ray diffractometer (TF-XRD, X'pert Philips, Netherlands). It is confirmed that bioactive ions play an essential role in the normal bone growth and metabolism of the human skeletal tissues.

  • PDF

Thiol-dependent Redox Mechanisms in the Modification of ATP-Sensitive Potassium Channels in Rabbit Ventricular Myocytes

  • Han, Jin;Kim, Na-Ri;Cuong, Dang-Van;Kim, Chung-Hui;Kim, Eui-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권1호
    • /
    • pp.15-23
    • /
    • 2003
  • Cellular redox state is known to be perturbed during ischemia and that $Ca^{2+}$ and $K^2$ channels have been shown to have functional thiol groups. In this study, the properties of thiol redox modulation of the ATP-sensitive $K^2$ ($K_{ATP}$) channel were examined in rabbit ventricular myocytes. Rabbit ventricular myocytes were isolated using a Langendorff column for coronary perfusion and collagenase. Single-channel currents were measured in excised membrane patch configuration of patch-clamp technique. The thiol oxidizing agent 5,5'-dithio-bis-(2-nitro-benzoic acid) (DTNB) inhibited the channel activity, and the inhibitory effect of DTNB was reversed by dithiothreitol (disulfide reducing agent; DTT). DTT itself did not have any effect on the channel activity. However, in the patches excised from the metabolically compromised cells, DTT increased the channel activity. DTT had no effect on the inhibitory action by ATP, showing that thiol oxidation was not involved in the blocking mechanism of ATP. There were no statistical difference in the single channel conductance for the oxidized and reduced states of the channel. Analysis of the open and closed time distributions showed that DTNB had no effect on open and closed time distributions shorter than 4 ms. On the other hand, DTNB decreased the life time of bursts and increased the interburst interval. N-ethylmaleimide (NEM), a substance that reacts with thiol groups of cystein residues in proteins, induced irreversible closure of the channel. The thiol oxidizing agents (DTNB, NEM) inhibited of the $K_{ATP}$ channel only, when added to the cytoplasmic side. The results suggested that metabolism-induced changes in the thiol redox can also modulate $K_{ATP}$ channel activity and that a modulatory site of thiol redox may be located on the cytoplasmic side of the $K_{ATP}$ channel in rabbit ventricular myocytes.