• 제목/요약/키워드: Metabolism, Species difference

검색결과 34건 처리시간 0.03초

The Effect of Dietary Docosahexaenoic Acid Enrichment on the Expression of Porcine Hepatic Genes

  • Chang, W.C.;Chen, C.H.;Cheng, W.T.K.;Ding, S.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권5호
    • /
    • pp.768-774
    • /
    • 2007
  • To study the effect of dietary docosahexaenoic acid (DHA) enrichment on the expression of hepatic genes in pigs, weaned, crossbred pigs (30 d old) were fed diets supplemented with either 2% tallow or DHA oil for 18 d. Hepatic mRNA was extracted. Suppression subtractive hybridization was used to explore the hepatic genes that were specifically regulated by dietary DHA enrichment. After subtraction, we observed 288 cDNA fragments differentially expressed in livers from pigs fed either 2% DHA oil or 2% tallow for 18 d. After differential screening, 7 genes were found to be differentially expressed. Serum amyloid A protein 2 (SAA2) was further investigated because of its role in lipid metabolism. Northern analysis indicated that hepatic SAA2 was upregulated by dietary DHA enrichment (p<0.05). In a second experiment, feeding 10% DHA oil for 2d significantly increased the expression of SAA2 (compared to the 10% tallow group; p<0.05). The porcine SAA2 full length cDNA sequence was cloned and the sequence was compared to the human and mouse sequences. The homology of the SAA2 amino acid sequence between pig and human was 73% and between pig and mouse was 62%. There was a considerable difference in SAA2 sequences among these species. Of particular note was a deletion of 8 amino acids, in the pig compared to the human. This fragment is a specific characteristic for the SAA subtype that involved in acute inflammation reaction. Similar to human and mouse, porcine SAA2 was highly expressed in the liver of pigs. It was not detectable in the skeletal muscle, heart muscle, spleen, kidney, lung, and adipose tissue. These data suggest that SAA2 may be involved in mediation of the function of dietary DHA in the liver of the pig, however, the mechanism is not yet clear.

Molecular Characterization and Expression of LDHA and LDHB mRNA in Testes of Japanese Quail (Coturnix japonica)

  • Singh, R.P.;Sastry, K.V.H.;Pandey, N.K.;Shit, N.G.;Agarwal, R.;Singh, R.;Sharma, S.K.;Saxena, V.K.;Jagmohan, Jagmohan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권8호
    • /
    • pp.1060-1068
    • /
    • 2011
  • The LDH isozymes are key catalysts in the glycolytic pathway of energy metabolism. It is well known that the distribution of the LDH isozymes vary in accordance with the metabolic requirements of different tissues. The substrates required for energy production change noticeably at successive stages of testes development suggesting a significant flexibility in the expression of glycolytic enzymes. Therefore, expression of LHDA and LDHB mRNAs was examined in adult and prepubertal quail testis. The mRNA of both LDHA and LDHB were expressed and no significant difference was observed in prepubertal testes. The mRNA levels of LDHB significantly increased during testicular development. In the adult testis, LDHA mRNA was not expressed. Expression studies revealed the presence of different LDH isozymes during testicular development. In contrast, electrophoresis of both testicular samples revealed only single band at a position indicative of an extreme type of LDH isozyme in quail testes. Furthermore, nucleotide and amino acid sequence analysis revealed significant similarity to chicken, duck and rock pigeon. These sequence results confirmed the similarity of LDHA and LDHB subunit protein in different avian species.

Physiological Responses of Rice Seedlings to Butachlor (Butachlor에 대한 벼 유묘의 생리적 반응)

  • Tsai, Wen-Fu
    • Korean Journal of Weed Science
    • /
    • 제15권4호
    • /
    • pp.247-253
    • /
    • 1995
  • The herbicide butachlor [N-(butoxymethyl)-2-chloro-N-(2,6-di-methylphenyl) acetamide] is widely used by farmers as a tool for weed management of transplanted rice(Oryza sativa L.) in Taiwan. The herbicide did not stop germination of rice and weed seeds, but strongly inhibited the subsequent growth of young shoots and roots. The inhibition was also strong on established seedlings. However, they could recover to normal growth after the herbicide effect disappeared. Butachlor greatly decreased the endogenous indole-3-acetic acid (IAA) but increased the endogenous abscisic acid (ABA) contents of rice seedlings. Addition of lAA into growth medium (Hoagland's solution) partly relieved growth inhibition. Pretreatment of both gibberellic acid ($GA_3$) and IAA 24 hours before butachlor treatment almost completely alleviated the butachlor-interfere with GA and/or IAA metabolism or their action resulting in the growth inhibition of rice. Butachlor was readily absorbed by rice roots. During 24 hours of uptake experiment, 32% of the applied herbicide was absorbed. Pretreatment of the herbicide for 2 days did ncx affect the absorption. Of the absorbed herbicide, 80% remained in roots, only 20% transported into shoots, and more than 50% was metabolized to water soluble substances. Thin-layer chromatographic (TLC) analysis indicated that the Rf value of the most abundant metabolite was butachlor-glutathione conjugate. Rice, barnyardgrass (Echinochloa crus-galli (L.) Beauv.), and monochoria (Monochoria vaginalis Presl) seedlings contained relatively high level of non-protein thiols, while the glutathione S-transferase (GST) activity was found highest in rice, barnyardgrass the next, monochoria the lowest. The difference in GST activity among these species might be related to their sensitivity to butachlor.

  • PDF

The Effect of Ground Cherry Extract on the Activity of Hepatic Aniline Hydroxylase in Mice

  • Lee, Sang-Il;Lee, Sang-Hee
    • Preventive Nutrition and Food Science
    • /
    • 제13권2호
    • /
    • pp.61-65
    • /
    • 2008
  • To evaluate the effect of ground cherry extract on the activity of aniline hydroxylase, we gave ground cherry extract in doses of 100, 200 or 400 mg/kg i.p to mice for 1, 2 or 4 days. The aniline hydroxylase activity in the group treated with ground cherry extract increased in a dose dependant manner in all experimental groups compared with the control group, and was significantly higher in the group treated with ground cherry extract at a dose of 200 mg/kg, which also exhibited a time dependant increase over 4 days. Enzyzme kinetic analysis was performed for hepatic aniline hydroxylase activity in the group treated with 200 mg/kg for 4 days. There was no change of the Km values for aniline hydroxylase between the experimental group and the control group, but the Vmax values for aniline hydroxylase was 21% lower in the experimental group compared with the control. The experimental group also showed lower lipid peroxide and reduced glutathione content, and there were no significant difference in serum alanine aminotransferase activity between the experimental group and the control. Aniline was injected into both the experimental group mice treated with ground cherry extract at a dose of 200 mg/kg for 4 days and the control group, and then the level of blood aniline was assayed at 1hr. The level of blood aniline was lower in the experimental than the control group. This study suggests that ground cherry extract induces hepatic aniline hydroxylase activity and might accelerate the scavenging system of reactive oxygen species. It is likely that ground cherry extract influences the metabolism of xenobiotics by activating AH activity substituted for CYP2E1.

Effect of Exogenous Sulfur on Hydrogen Peroxide, Ammonia and Proline Synthesis in White Clover (Trifolium repens L.)

  • Baek, Seon-Hye;Muchamad, Muchlas;Lee, Bok-Rye;Kim, Tae-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • 제42권3호
    • /
    • pp.195-200
    • /
    • 2022
  • Sulfur is an essential element in plants, including amino acids, vitamin synthesis, and acting as an antioxidant. However, the interaction between endogenous sulfur and proline synthesis has not been yet fully documented. White clover (Trifolium repens L.) is known as a species highly sensitive to sulfate supply. Therefore, this study aimed to elucidate the role of sulfur in regulating proline metabolism in relation to ammonia detoxification and hydrogen peroxide (H2O2) accumulation in white clover. The detached leaves of white clover were immersed in solution containing different concentration of sulfate (0, 10, 100, and 1000 mM MgSO4). As MgSO4 concentrations were increased, the concentration of H2O2 increased up to 2.5-fold compared to control, accompanied with H2O2 detection in leaves. Amino acid concentrations significantly increased only at higher levels (100 and 1000 mM MgSO4). No significant difference was observed in protein concentration. Proline and ∆1-pyrroline-5-carboxylate (P5C) concentrations slightly decreased at 10 and 100 mM MgSO4 treatments, whereas it rapidly increased over 1.9-fold at 1000 mM MgSO4 treatment. Ammonia concentrations gradually increased up to 8.6-fold. These results indicate that exogenous sulfur levels are closely related to H2O2 and ammonia synthesis but affect proline biosynthesis only at a higher level.

Oligomerized polyphenols in lychee fruit extract supplements may improve high-intensity exercise performance in male athletes: a pilot study

  • Kawamura, Aki;Hashimoto, Shun;Suzuki, Miho;Ueno, Hiromasa;Sugita, Masaaki
    • Korean Journal of Exercise Nutrition
    • /
    • 제25권3호
    • /
    • pp.8-15
    • /
    • 2021
  • [Purpose] Excessive reactive oxygen species (ROS) induced by prolonged high-intensity exercise can cause structural and functional damage. Antioxidant polyphenol supplementation, which reduces ROS levels, may improve high-intensity exercise performance. We evaluated the effect of lychee fruit extract, which contains high levels of low-molecular-weight oligomerized polyphenols, on high-intensity exercise performance. [Methods] Ten male athletes were included in an open-label trial that consisted of control and intervention phases, with a 7-day washout period between phases. The participants were administered oligomerized lychee fruit extract for seven days, whereas no intervention was given in the control phase. High-intensity intermittent exercise and the Wingate test were performed. The power output, blood lactate levels, reactive oxygen metabolite levels, biological antioxidant potential, heart rate, and rate of perceived exertion were measured. [Results] The average power output was significantly higher in the intervention phase than in the control phase (P < 0.01), while the change in blood lactate levels was significantly lower in the intervention phase than in the control phase (P < 0.05). The average heart rate was significantly higher in the intervention phase than in the control phase (P < 0.05), without changing the rate of perceived exertion. Although there was no difference in reactive oxygen metabolite levels between the phase, the change in biological antioxidant potential was larger in the intervention phase than in the control phase (P = 0.06). The Wingate test showed no significant differences between the phase. [Conclusion] Short-term loading with oligomerized lychee fruit extract may increase performance during high-intensity intermittent exercise by improving metabolism.

Tolerance Mechanism to Simazine in Coix lacryma-jobi (율무(Coix lacryma-jobi)의 제초제 Simazine에 대한 내성기구)

  • Ma, Sang-Yong;Kim, Jong-Seok;Chun, Jae-Chul
    • Korean Journal of Environmental Agriculture
    • /
    • 제16권1호
    • /
    • pp.37-43
    • /
    • 1997
  • Tolerance mechanism to simazine (6-chloro-N,N'-diethyl-1,3,5-triazine-2,4-diamine) in Coix lacryma-jobi was investigated with respect to herbicide detoxification via glutathione conjugation. Simazine was initially absorbed by seedlings of C. lacryma-jobi and corn, but after 12 hours of treatment, no significant difference in simazine absorption was found in both species. Simazine absorbed was rapidly metabolized to glutathione-simazine conjugate. One to six hours after treatment, metabolism was approximately 2-fold faster in C. lacryma-jobi than in corn. Glutathione content was found 1.5- and 2.3-fold higher in coleoptile and root of C. lacryma-jobi, respectively, compared with corn. In both species, the highest concentration of glutathione was found in coleoptile tissue. Glutathione S-transferase that exhibits activity with 1-chloro-2,4-dinitrobenzene was not significantly different between two species. However, glutathione S-transferase activity with simazine was approximately 2-fold greater in C. lacryma-jobi than in corn. The glutathione S-transferase activity was 20 to 30% greater in shoot of either species than in root. Fast protein liquid chromatography-anion exchange column was used to separate glutathione S-transferase isozymes in coleoptiles of C. lacryma-jobi and corn. A peak of glutathione S-transferase activity with 1-chloro-2,4-dinitrobenzene and two peaks of glutathione S-transferase activity with simazine from C. lacryma-jobi were coeluted with those from corn, but showed greater activity than in the case of corn. Another glutathione S-transferase isozyme that exhibits activity with simazine was detected in the elution of C. lacryma-jobi extract, but not in corn. Electron transport in chloroplast thylakoids isolated from leaves of both species was equally sensitive to simazine applied at 1 to 100 nM. These results indicate that the simazine tolerance in C. lacryma-jobi is due to its capacity to detoxify the herbicide via glutathione conjugation, which is positively correlated with the level of glutathione content and glutathione S-transferase activity.

  • PDF

Adverse Effects of the Megadose Perilla Oil on the Rats Metabolism (들깨기름을 다량 투여한 흰쥐에서 대사에 미치는 역작용에 관하여)

  • 서화중;서유승
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • 제31권2호
    • /
    • pp.277-283
    • /
    • 2002
  • In the present study, adverse effects of megadose of dietary perilla oil were investigated in an experimental model consisted of 6 groups of Wistar rats. To compare the adverse effects of megadose perilla oil with different kind of dietary fat, rats were fed one of the following diets for one month: 10% beef tallow (B$_1$B), 10% corn oil (C$_1$B), 10% perilla oil (P$_1$B), 20% beef tallow (B$_2$B), 20% corn oil (C$_2$B), and 20% perilla oil (P$_2$B) diet. The body weight gain rate seemed to be more affected by the size of fat contents than the species of fat in the diet, so the body weight gain rate of 20% fat groups were significantly higher than those of 10% fat groups in spite of the larger amount of flood intake in 10% fat groups than in 20% fat groups. The levers of plasma triglyceride and total-cholesterol in 20% fat groups were significantly increased in dose dependent fashion when compared to 10% groups, the values of beef tallow (B$_2$B) group being the highest among all groups. Plasma glutainic pyruvic transferase activities and level of blood urea nitrogen had a tendency to increase along with increase of fat contents (%) in diets, the values of P$_2$B group, the highest among all groups, being beyond the normal levers. The plasma carbon dioxide concentration of P$_2$B group was the highest in all groups and exceeded the normal value, there being no significant difference among the plasma carbon dioxide concentration of others groups. The results showed that large dose and long term intake of dietary perilla oil had some adverse effects on hepatic and other organic functions in rats.

Nutritional and Tissue Specificity of IGF-I and IGFBP-2 Gene Expression in Growing Chickens - A Review -

  • Kita, K.;Nagao, K.;Okumura, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권5호
    • /
    • pp.747-754
    • /
    • 2005
  • Nutritional regulation of gene expression associated with growth and feeding behavior in avian species can become an important technique to improve poultry production according to the supply of nutrients in the diet. Insulin-like growth factor-I (IGF-I) found in chickens has been characterized to be a 70 amino acid polypeptide and plays an important role in growth and metabolism. Although it is been well known that IGF-I is highly associated with embryonic development and post-hatching growth, changes in the distribution of IGF-I gene expression throughout early- to late-embryogenesis have not been studied so far. We revealed that the developmental pattern of IGF-I gene expression during embryogenesis differed among various tissues. No bands of IGF-I mRNA were detected in embryonic liver at 7 days of incubation, and thereafter the amount of hepatic IGF-I mRNA was increased from 14 to 20 days of incubation. In eyes, a peak in IGF-I mRNA levels occurred at mid-embryogenesis, but by contrast, IGF-I mRNA was barely detectable in the heart throughout all incubation periods. In the muscle, no significant difference in IGF-I gene expression was observed during different stages of embryogenesis. After hatching, hepatic IGF-I gene expression as well as plasma IGF-I concentration increases rapidly with age, reaches a peak before sexual maturity, and then declines. The IGF-I gene expression is very sensitive to changes in nutritional conditions. Food-restriction and fasting decreased hepatic IGF-I gene expression and refeeding restored IGF-I gene expression to the level of fed chickens. Dietary protein is also a very strong factor in changing hepatic IGF-I gene expression. Refeeding with dietary protein alone successfully restored hepatic IGF-I gene expression of fasted chickens to the level of fed controls. In most circumstances, IGF-I makes a complex with specific high-affinity IGF-binding proteins (IGFBPs). So far, four different IGFBPs have been identified in avian species and the major IGFBP in chicken plasma has been reported to be IGFBP-2. We studied the relationship between nutritional status and IGFBP-2 gene expression in various tissues of young chickens. In the liver of fed chickens, almost no IGFBP-2 mRNA was detected. However, fasting markedly increased hepatic IGFBP-2 gene expression, and the level was reduced after refeeding. In the gizzard of well-fed young chickens, IGFBP-2 gene expression was detected and fasting significantly elevated gizzard IGFBP-2 mRNA levels to about double that of fed controls. After refeeding, gizzard IGFBP-2 gene expression decreased similar to hepatic IGFBP-2 gene expression. In the brain, IGFBP-2 mRNA was observed in fed chickens and had significantly decreased by fasting. In the kidney, IGFBP-2 gene expression was observed but not influenced by fasting and refeeding. Recently, we have demonstrated in vivo that gizzard and hepatic IGFBP-2 gene expression in fasted chickens was rapidly reduced by intravenous administration of insulin, as indicated that in young chickens the reduction in gizzard and hepatic IGFBP-2 gene expression in vivo stimulated by malnutrition may be, in part, regulated by means of the increase in plasma insulin concentration via an insulin-response element. The influence of dietary protein source (isolated soybean protein vs. casein) and the supplementation of essential amino acids on gizzard IGFBP-2 gene expression was examined. In both soybean protein and casein diet groups, the deficiency of essential amino acids stimulated chickens to increase gizzard IGFBP-2 gene expression. Although amino acid supplementation of a soybean protein diet significantly decreased gizzard IGFBP-2 mRNA levels, a similar reduction was not observed in chickens fed a casein diet supplemented with amino acids. This overview of nutritional regulation of IGF-I and IGFBP-2 gene expression in young chickens would serve for the establishment of the supply of nutrients to diets to improve poultry production.

Effects of Dietary Supplementation of Lactobacillus on Performance, Nutrient Digestibility, Intestinal Microflora, and Fecal $NH_{3}$ Emission in Laying Hens (산란계의 생산성, 영양소 소화율 분의 암모니아 발생량 및 장내 미생물 변화에 대한 유산균의 급여 효과)

  • 김상호;유동조;박수영;이상진;최철환;나재천;류경선
    • Korean Journal of Poultry Science
    • /
    • 제29권3호
    • /
    • pp.213-223
    • /
    • 2002
  • This study was conducted to investigate the influence of feeding various Lactobacillus on production performance, nutrients digestibility, intestinal microflora, and fecal $NH_{3}$ gas emission in laying hens. Three hundred and sixty ISA Brown layers, 21 weeks of age, were randomly allotted to nine treatments, with low replicates per treatment. Nine treatments consisted of Control(no Lactobacillus), Lactobacillus crispatus avibrol(LCB: KFCC-11195), Lactobaciilus reuteri avibro2(LRB: KFCC-11196), Lactobacillus crispatus avihenl(LCH: KFCC-11197), Lactobacillus vaginalis avihen2(LVH: KFCC-11198). Each Lactobacillus was added at two levels ($10^{4}$and $10^{7}$ cfu/g diets). Egg production, and egg weight were measured daily. A metabolism trial was conducted following the 12-week feeding trial, during which egg qualities, intestinal microflora and fecal $NH_{3}$ gas emission were examined. Egg production and daily egg mass improved significantly by the addition of various Lactobacillus(P<0.05), of which effect was more notable during the latter part of the feeding trial. But, no significant differences were found among Lactobacillus strains and between two levels of supplementation. Egg weight and feed intake showed no difference among all treatments. Feed conversion ratio of birds fed lactobacillus was significantly improved compared to that of the Control(P<0.05), but not different among lactobacillus treatments. Digestibility of crude protein, ether extract and crude ash improved significantly in lactobacillus treatments(P<0.05). However, there were not statistically different by adding levels and strains. Total counts of Lactobacillus spp. in ileum of layers fed Lactobacillus were significantly higher than that of the control, but no consistent trend was found in cecum. There were no significant differences in intestinal yeast and anaerobes counts among all treatments. The Lactobaciilus supplementation did not exert my effect on the eggshell quality and Haugh unit. Fecal $NH_{3}$ gas emission decreased significantly in Lactobacillus treatments, and showed no difference between the two supplementation levels. From the result of this study, it could be concluded that dietary supplementation of Lactobacillus, regardless of their species, Improves the laying performance and decreases the fecal ammonia gas emission. The proper level of supplementation appears to be $10^{4}$ cfu/g of diet.