• Title/Summary/Keyword: Metabolic component

Search Result 185, Processing Time 0.026 seconds

Effects of Daehwanggamchoeumja and its component groups on diabetes, free radical and antioxidative defense system in Alloxan-induced diabetic rats (대황감초음자(大黃甘草飮子)와 그 구성약물군(構成藥物群)이 Alloxan 유도 당뇨(糖尿) 백서(白鼠)의 혈청 조성 및 항산화 효과에 미치는 영향)

  • Go Won-Do;Gwak Dong-Gul;Shin Hwa-Seog;Choi Oi-Chul;Park Sun-Dong
    • Herbal Formula Science
    • /
    • v.10 no.2
    • /
    • pp.159-188
    • /
    • 2002
  • The purpose of this study was to reseach the effect of Daehwanggamchoeumja(大黃甘草飮子) and its component groups on diabetes, free radicals, and antioxidants system in Alloxan-induced diabetic rats. The experimental group was divided into three groups: Daehwanggamchoeumja(DG), and its components groups, Gamdutang (Gamcho&Daedu; DG-I) and Daehwanggamchotang(DG-2). The results were obtained as follows: 1. In the study of effect on diabetic metabolic dysfunction(Glucose, Triglyceride, Total Cholesterol, HDL Cholesterol, Total Protein, Albumin, Creatine, BUN), only DG has a significant effect. 2. In the study on free radical scavenging effect in vitro(the suppressing effect on peroxidation of linoleic acid on concentration, the scavenging effect of DPPH radical, inhibitory effect of superoxide in xanthine-xanthine oxidase system, inhibitory effect on lipid peroxidation reaction by hydroxy radical in $H_2O_2Fe^{2-}$system, and the effect on Nitrate reductase activity), DG and DG-2 have more effect than DG-l relatively. 3. In the study on antioxidants system in vivo(The level of serum LPO, The level of hepatic LPO, Catalase, GSH, GST), only DG has a significant effect. These results suggest that Daehwanggamchoeumja(大黃甘草飮子) has an effect on diabetes, peroxidative damage by free radical, so it seems to be useful to prevent and treat diabetes. The mechanisms of these are supposed to be involved in antioxidant and three drugs' cooperative synergy effect.

  • PDF

Metabolic Changes of Phomopsis longicolla Fermentation and Its Effect on Antimicrobial Activity Against Xanthomonas oryzae

  • Choi, Jung Nam;Kim, Jiyoung;Ponnusamy, Kannan;Lim, Chaesung;Kim, Jeong Gu;Muthaiya, Maria John;Lee, Choong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.2
    • /
    • pp.177-183
    • /
    • 2013
  • Bacterial blight, an important and potentially destructive bacterial disease in rice caused by Xanthomonas oryzae pv. oryzae (Xoo), has recently developed resistance to the available antibiotics. In this study, mass spectrometry (MS)-based metabolite profiling and multivariate analysis were employed to investigate the correlation between timedependent metabolite changes and antimicrobial activities against Xoo over the course of Phomopsis longicolla S1B4 fermentation. Metabolites were clearly differentiated based on fermentation time into phase 1 (days 4-8) and phase 2 (days 10-20) in the principal component analysis (PCA) plot. The multivariate statistical analysis showed that the metabolites contributing significantly for phases 1 and 2 were deacetylphomoxanthone B, monodeacetylphomoxanthone B, fusaristatin A, and dicerandrols A, B, and C as identified by liquid chromatography-mass spectrometry (LC-MS), and dimethylglycine, isobutyric acid, pyruvic acid, ribofuranose, galactofuranose, fructose, arabinose, hexitol, myristic acid, and propylstearic acid were identified by gas chromatography-mass spectrometry (GC-MS)-based metabolite profiling. The most significantly different secondary metabolites, especially deacetylphomoxanthone B, monodeacetylphomoxanthone B, and dicerandrol A, B and C, were positively correlated with antibacterial activity against Xoo during fermentation.

Changes of Chemical Composition during Seedling Development in Soybean

  • Seong, Rak-Chun;Choi, Kyu-Hoon;Harry C. Minor
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.2
    • /
    • pp.95-100
    • /
    • 1998
  • Seedling establishment of soybean [Glycine mar (L.) Mer-rill] is an important factor for soybean production in the field. The objective of this study was to determine the distribution of chemical composition in the emerging organs during seedling development in soybeans. Three soybean cultivars (Hill, Paldalkong, and Jangyeobkong) were planted at the Research Farm of College of Natural Resources, Korea University, on May 26, June 5, and June 14. Protein, oil, sugar, and starch contents were measured in each organ at each developing stage. Mean dry weight of three soybean cultivars decreased until VE stage and increased after this stage. Protein content of whole seedling did not change significantly during the seedling growth stage, but the amount in cotyledons markedly decreased with each growth stage increment. About 88% of the cotyledon protein was translocated to the other parts of the seedling at the V2 stage. Oil content of cotyledons sharply decreased until the V1 stage. Sugar content of the seedling was not detected at VE stage and starch content of seedlings increased slightly at VE and VC stages. For the changes of each metabolic component, the amount for whole plants decreased until the V1 stage and started to increase after this stage. The results of this study provide evidence for the breakdown of carbohydrates and oil at the initial stage of seedling growth.

  • PDF

Vitamin D status and childhood health

  • Shin, Youn Ho;Shin, Hye Jung;Lee, Yong-Jae
    • Clinical and Experimental Pediatrics
    • /
    • v.56 no.10
    • /
    • pp.417-423
    • /
    • 2013
  • Vitamin D is an essential component of bone and mineral metabolism; its deficiency causes growth retardation and skeletal deformities in children and osteomalacia and osteoporosis in adults. Hypovitaminosis D (vitamin D insufficiency or deficiency) is observed not only in adults but also in infants, children, and adolescents. Previous studies suggest that sufficient serum vitamin D levels should be maintained in order to enhance normal calcification of the growth plate and bone mineralization. Moreover, emerging evidence supports an association between 25-hydroxyvitamin D (25[OH]D) levels and immune function, respiratory diseases, obesity, metabolic syndrome, insulin resistance, infection, allergy, cancers, and cardiovascular diseases in pediatric and adolescent populations. The risk factors for vitamin D insufficiency or deficiency in the pediatric population are season (winter), insufficient time spent outdoors, ethnicity (non-white), older age, more advanced stage of puberty, obesity, low milk consumption, low socioeconomic status, and female gender. It is recommended that all infants, children, and adolescents have a minimum daily intake of 400 IU ($10{\mu}g$) of vitamin D. Since the vitamin D status of the newborn is highly related to maternal vitamin D levels, optimal vitamin D levels in the mother during pregnancy should be maintained. In conclusion, given the important role of vitamin D in childhood health, more time spent in outdoor activity (for sunlight exposure) and vitamin D supplementation may be necessary for optimal health in infants, children, and adolescents.

The Role of Milk Products in Metabolic Health and Weight Management

  • Zemel, Michael B.
    • Journal of Dairy Science and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.17-28
    • /
    • 2010
  • A substantial body of evidence has emerged over the last decade in support of the novel concept that dietary calcium and dairy foods play an important role in regulating energy metabolism and thereby promote healthy weight management and reduce obesity risk. This concept has been demonstrated in experimental animals studies, cross-sectional and prospective population studies and a number of randomized clinical trials. Notably, the effects of dairy foods in weight management are more consistent than the effects of supplemental calcium across clinical trials, and calcium per se is responsible for approximately 40-50% of the effects of dairy. The calcium component is only effective in individuals with chronically low calcium intake, as it serves to prevent the endocrine response to low calcium diets which otherwise favors adipocyte energy storage; calcium also serves to promote energy loss via formation of calcium soaps in the gastrointestinal tract and thereby reduce fat absorption. The calcium-independent anti-obesity bioactivity of dairy resides primarily in whey. The key components identified to date are leucine and bioactive peptides resulting from whey protein digestion. The high concentration of leucine in whey stimulates a repartitioning of dietary energy from adipose tissue to skeletal muscle where it provides the energy required for leucine-stimulated protein synthesis, resulting in increased loss of adipose tissue and preservation of skeletal muscle mass during weight loss. Finally, dairy rich diets suppress the oxidative and inflammatory responses to obesity and thereby attenuate the diabetes and cardiovascular disease risk associated with obesity.

  • PDF

Long noncoding RNA: multiple players in gene expression

  • Chen, Xiaochang;Sun, Yunmei;Cai, Rui;Wang, Guoqiang;Shu, Xiaoyan;Pang, Weijun
    • BMB Reports
    • /
    • v.51 no.6
    • /
    • pp.280-289
    • /
    • 2018
  • Previously considered as a component of transcriptional noise, long noncoding RNAs (lncRNAs) were neglected as a therapeutic target, however, recently increasing evidence has shown that lncRNAs can participate in numerous biological processes involved in genetic regulation including epigenetic, transcriptional, and post-transcriptional regulation. In this review, we discuss the fundamental functions of lncRNAs at different regulatory levels and their roles in metabolic balance. Typical examples are introduced to illustrate their diverse molecular mechanisms. The comprehensive investigation and identification of key lncRNAs will not only contribute to insights into diseases, such as breast cancer and type II diabetes, but also provide promising therapeutic targets for related diseases.

Studies on the Physiological Chemistry of Spring Habits in Naked Barley II. Variration of Free Amino Acids during the Germination of Naked Barley with Different Spring Habits (과맥의 파성에 대한 생리화학적 연구 II. 파성심도에 따른 종자발아과정에 있어서의 유이아미노산의 소장)

  • 최선영
    • Journal of Plant Biology
    • /
    • v.20 no.2
    • /
    • pp.83-89
    • /
    • 1977
  • Changes in the alcohol-soluble free amino acids during germination of a spring grain, Wanju and two winter grains, Sedohadaka and Nonsankwa No.1-6 which are differing in their degree of spring (winter) habits, were investigated by thin layer chromatography. The results obtained are as follows. 1. Throughout the germination period, 25 ninhydrin positive components; 22 amino acids including two amides and 3 unknown spots were detected. It is interesting to note that identification of histidine was confined to Wanju and Sedohadaka but Nonsankwa No.1-6, which has the lower degree of spring habit. 2. Except the quiescent seeds, the major components were generally composed of the acidic and neutral amino acids together with glutamine and asparagine. 3. Proline was contained in higher quantity except from the stage of quiescent seeds, but the outstanding difference among the varieties was not recognized. Whether this component is related to the mechanism of spring habit in barley or not is a problem to be studied more. 4. In all the varieties, most of the changes in amino acid levels during germination were usually in the same direction and of the same pattern under the temperature controlled not to be varnalized. In view of the results above, the changes in the amino acid levels seem to be more affected by the changes of growing circumstances and the subsequent metabolic activities of certain enzymes than by the characteristics of varieties themselves.

  • PDF

Imaging Cancer Metabolism

  • Momcilovic, Milica;Shackelford, David B.
    • Biomolecules & Therapeutics
    • /
    • v.26 no.1
    • /
    • pp.81-92
    • /
    • 2018
  • It is widely accepted that altered metabolism contributes to cancer growth and has been described as a hallmark of cancer. Our view and understanding of cancer metabolism has expanded at a rapid pace, however, there remains a need to study metabolic dependencies of human cancer in vivo. Recent studies have sought to utilize multi-modality imaging (MMI) techniques in order to build a more detailed and comprehensive understanding of cancer metabolism. MMI combines several in vivo techniques that can provide complementary information related to cancer metabolism. We describe several non-invasive imaging techniques that provide both anatomical and functional information related to tumor metabolism. These imaging modalities include: positron emission tomography (PET), computed tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS) that uses hyperpolarized probes and optical imaging utilizing bioluminescence and quantification of light emitted. We describe how these imaging modalities can be combined with mass spectrometry and quantitative immunochemistry to obtain more complete picture of cancer metabolism. In vivo studies of tumor metabolism are emerging in the field and represent an important component to our understanding of how metabolism shapes and defines cancer initiation, progression and response to treatment. In this review we describe in vivo based studies of cancer metabolism that have taken advantage of MMI in both pre-clinical and clinical studies. MMI promises to advance our understanding of cancer metabolism in both basic research and clinical settings with the ultimate goal of improving detection, diagnosis and treatment of cancer patients.

Modification of amylose content of sweetpotato starch by RNAi technique

  • Shimada, Takiko;Otani, Motoyasu;Hamada, Tatsurou;Kim, Sun-Hyung
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2005.11a
    • /
    • pp.351-355
    • /
    • 2005
  • In the storage roots of sweetpotato (Ipomoea batatas (L.) Lam. cv. Kokei 14), 10 to 20% of starch is essentially unbranched linear amylose and the other major component is branched amylopectin. Amylose is produced by the enzyme GBSSI (granule bound starch synthase I), whereas amylopectin is produced by a concerted action of soluble starch synthase and starch branching enzymes (SBEI and SBEII). We constructed double-stranded RNA (dsRNA) interference vectors of GBSSI and IbSBEII and introduced them into sweetpotato genome via Agrobacterium-mediated gene transformation. The endogenous GBSSI expression was inhibited by dsRNA of GBSSI in 73 % of transgenic plants giving rise to the storage tubers containing amylopectin but not amylose. On the other hand, all sweetpotato plants transformed with dsRNA of IbSBEII contained a larger amount of amylose than the non-transgenic control (up to 25% compared to 10% in the controls). The RNA interference (RNAi) is effectively inhibited the gene expression in thestarch metabolic pathway and modified the characteristics of starch in sweetpotato.

  • PDF

In silico analysis of MeJA-induced comparative transcriptomes in Brassica oleraceae L. var. capitata

  • Lee, Ok Ran;Kim, Dae-Soo
    • Journal of Plant Biotechnology
    • /
    • v.43 no.2
    • /
    • pp.189-203
    • /
    • 2016
  • Brassica oleraceae var capitata is a member of the Brassicaceae family and is widely used as an horticultural crop. In the present study, transcriptome analysis of B. oleraceae L. var capitata was done for the first time using eight-week old seedlings treated with $50{\mu}m$ MeJA, versus mock-treated samples. The complete transcripts for both samples were obtained using the GS-FLX sequencer. Overall, we obtained 275,570 and 266,457 reads from seedlings treated with or without $50{\mu}m$ MeJA, respectively. All the obtained reads were annotated using biological databases and functionally classified using gene ontology (GO), the Kyoto Encyclopedia of Genes and Genomics (KEGG). By using GO analyses, putative transcripts were examined in terms of biotic and abiotic stresses, cellular component organization, biogenesis, and secondary metabolic processes. The KEGG pathways for most of the transcripts were involved in carbohydrate metabolism, energy metabolism, and secondary metabolite synthesis. In order to double the sequenced data, we randomly chose two putative genes involved in terpene biosynthetic pathways and studied their transcript patterns under MeJA treatment. This study will provide us a platform to further characterize the genes in B. oleracea var capitata.