• 제목/요약/키워드: Metabolic Network

검색결과 140건 처리시간 0.028초

Benefits of procyanidins on gut microbiota in Bama minipigs and implications in replacing antibiotics

  • Zhao, Tingting;Shen, Xiaojuan;Dai, Chang;Cui, Li
    • Journal of Veterinary Science
    • /
    • 제19권6호
    • /
    • pp.798-807
    • /
    • 2018
  • Several studies have reported the effect of absorption of procyanidins and their contribution to the small intestine. However, differences between dietary interventions of procyanidins and interventions via antibiotic feeding in pigs are rarely reported. Following 16S rRNA gene Illumina MiSeq sequencing, we observed that both procyanidin administration for 2 months (procyanidin-1 group) and continuous antibiotic feeding for 1 month followed by procyanidin for 1 month (procyanidin-2 group) increased the number of operational taxonomic units, as well as the Chao 1 and ACE indices, compared to those in pigs undergoing antibiotic administration for 2 months (antibiotic group). The genera Fibrobacter and Spirochaete were more abundant in the antibiotic group than in the procyanidin-1 and procyanidin-2 groups. Principal component analysis revealed clear separations among the three groups. Additionally, using the online Molecular Ecological Network Analyses pipeline, three co-occurrence networks were constructed; Lactobacillus was in a co-occurrence relationship with Trichococcus and Desulfovibrio and a co-exclusion relationship with Bacillus and Spharerochaeta. Furthermore, metabolic function analysis by phylogenetic investigation of communities by reconstruction of unobserved states demonstrated modulation of pathways involved in the metabolism of carbohydrates, amino acids, energy, and nucleotides. These data suggest that procyanidin influences the gut microbiota and the intestinal metabolic function to produce beneficial effects on metabolic homeostasis.

대사증후군에 대한 식이와 운동 효과에 대한 메타분석 (Effects of Dietary and Physical Activity Interventions on Metabolic Syndrome: A Meta-analysis)

  • 이건아;최혜영;양숙자
    • 대한간호학회지
    • /
    • 제45권4호
    • /
    • pp.483-494
    • /
    • 2015
  • Purpose: This study identified effects of dietary and physical activity interventions including dietary interventions or physical activity interventions alone or combined dietary-physical activity interventions to improve symptoms in metabolic syndrome including abdominal obesity, high triglycerides, low high density lipoprotein cholesterol, elevated blood pressure, and elevated fasting glucose through meta-analysis. Methods: Articles on metabolic syndrome X published from 1988 to 2013 were searched through electronic databases, Google Scholar, and reference reviews. Methodological quality was assessed by the checklist, SIGN (Scottish Intercollegiate Guidelines Network). Results: In the meta-analysis, there were 9 articles reporting 13 interventions with 736 participants. Using random effect models, the dietary and/or physical activity interventions showed a lower mean difference in waist circumference ( - 1.30 cm, 95% CI: - 2.44~ - 0.15, p=.027). The combined dietary-physical activity interventions showed a lower mean difference in waist circumference ( - 2.77 cm, 95% CI: - 4.77~ - 0.76, p=.007) and systolic blood pressure ( - 5.44 mmHg, 95% CI: - 10.76~ - 0.12, p=.044). Additionally, interventions of over 24 weeks yielded a lower mean difference in waist circumference ( - 2.78 cm, 95% CI: - 4.69~ - 0.87, p=.004) and diastolic blood pressure ( - 1.93 mmHg, 95% CI: - 3.63~ - 0.22, p=.026). Conclusion: The findings indicate that dietary and/or physical activity interventions for metabolic syndrome reduce central obesity with no adverse effects. This finding provides objective evidences for dietary and physical activity management on metabolic syndrome as an efficient intervention.

Developmental Roles of D-bifunctional Protein-A Zebrafish Model of Peroxisome Dysfunction

  • Kim, Yong-Il;Bhandari, Sushil;Lee, Joon No;Yoo, Kyeong-Won;Kim, Se-Jin;Oh, Gi-Su;Kim, Hyung-Jin;Cho, Meyoung;Kwak, Jong-Young;So, Hong-Seob;Park, Raekil;Choe, Seong-Kyu
    • Molecules and Cells
    • /
    • 제37권1호
    • /
    • pp.74-80
    • /
    • 2014
  • The peroxisome is an intracellular organelle that responds dynamically to environmental changes. Various model organisms have been used to study the roles of peroxisomal proteins in maintaining cellular homeostasis. By taking advantage of the zebrafish model whose early stage of embryogenesis is dependent on yolk components, we examined the developmental roles of the D-bifunctional protein (Dbp), an essential enzyme in the peroxisomal ${\beta}$-oxidation. The knockdown of dbp in zebrafish phenocopied clinical manifestations of its deficiency in human, including defective craniofacial morphogenesis, growth retardation, and abnormal neuronal development. Overexpression of murine Dbp rescued the morphological phenotypes induced by dbp knockdown, indicative of conserved roles of Dbp during zebrafish and mammalian development. Knockdown of dbp impaired normal development of blood, blood vessels, and most strikingly, endoderm-derived organs including the liver and pancreas - a phenotype not reported elsewhere in connection with peroxisome dysfunction. Taken together, our results demonstrate for the first time that zebrafish might be a useful model animal to study the role of peroxisomes during vertebrate development.

Systems-level mechanisms of action of Panax ginseng: a network pharmacological approach

  • Park, Sa-Yoon;Park, Ji-Hun;Kim, Hyo-Su;Lee, Choong-Yeol;Lee, Hae-Jeung;Kang, Ki Sung;Kim, Chang-Eop
    • Journal of Ginseng Research
    • /
    • 제42권1호
    • /
    • pp.98-106
    • /
    • 2018
  • Panax ginseng has been used since ancient times based on the traditional Asian medicine theory and clinical experiences, and currently, is one of the most popular herbs in the world. To date, most of the studies concerning P. ginseng have focused on specific mechanisms of action of individual constituents. However, in spite of many studies on the molecular mechanisms of P. ginseng, it still remains unclear how multiple active ingredients of P. ginseng interact with multiple targets simultaneously, giving the multidimensional effects on various conditions and diseases. In order to decipher the systems-level mechanism of multiple ingredients of P. ginseng, a novel approach is needed beyond conventional reductive analysis. We aim to review the systems-level mechanism of P. ginseng by adopting novel analytical framework-network pharmacology. Here, we constructed a compound-target network of P. ginseng using experimentally validated and machine learning-based prediction results. The targets of the network were analyzed in terms of related biological process, pathways, and diseases. The majority of targets were found to be related with primary metabolic process, signal transduction, nitrogen compound metabolic process, blood circulation, immune system process, cell-cell signaling, biosynthetic process, and neurological system process. In pathway enrichment analysis of targets, mainly the terms related with neural activity showed significant enrichment and formed a cluster. Finally, relative degrees analysis for the target-disease association of P. ginseng revealed several categories of related diseases, including respiratory, psychiatric, and cardiovascular diseases.

Different effects of prolonged β-adrenergic stimulation on heart and cerebral artery

  • Shin, Eunji;Ko, Kyung Soo;Rhee, Byoung Doo;Han, Jin;Kim, Nari
    • Integrative Medicine Research
    • /
    • 제3권4호
    • /
    • pp.204-210
    • /
    • 2014
  • The aim of this review was to understand the effects of ${\beta}$-adrenergic stimulation on oxidative stress, structural remodeling, and functional alterations in the heart and cerebral artery. Diverse stimuli activate the sympathetic nervous system, leading to increased levels of catecholamines. Long-term overstimulation of the ${\beta}$-adrenergic receptor (${\beta}AR$) in response to catecholamines causes cardiovascular diseases, including cardiac hypertrophy, stroke, coronary artery disease, and heartfailure. Although catecholamines have identical sites of action in the heart and cerebral artery, the structural and functional modifications differentially activate intracellular signaling cascades. ${\beta}AR$-stimulation can increase oxidative stress in the heart and cerebral artery, but has also been shown to induce different cytoskeletal and functional modifications by modulating various components of the ${\beta}AR$ signal transduction pathways. Stimulation of ${\beta}AR$ leads to cardiac dysfunction due to an overload of intracellular $Ca^{2+}$ in cardiomyocytes. However, this stimulation induces vascular dysfunction through disruption of actin cytoskeleton in vascular smooth muscle cells. Many studies have shown that excessive concentrations of catecholamines during stressful conditions can produce coronary spasms or arrhythmias by inducing $Ca^{2+}$-handling abnormalities and impairing energy production in mitochondria, In this article, we highlight the different fates caused by excessive oxidative stress and disruptions in the cytoskeletal proteome network in the heart and the cerebral artery in responsed to prolonged ${\beta}AR$-stimulation.

COMPARISON OF THE BIOMECHANICAL AND BIOSYNTHETIC BEHAVIOR OF NORMAL HUMAN FIBROBLASTS AND FIBROBLASTS ISSUE FROM A FOREHEAD WRINKLE

  • Jouandeaud, M.;Viennet, C.;Chadebec, P.;Bordes, S.;Closs, B.;Humbert, P.
    • 대한화장품학회:학술대회논문집
    • /
    • 대한화장품학회 2003년도 IFSCC Conference Proceeding Book I
    • /
    • pp.192-202
    • /
    • 2003
  • The wrinkles correspond to the most obvious expression of skin ageing and are manifested by changes on the organization and dermal structure. In the extracellular matrix, decreased quantities of collagens and glycosaminoglycans as well as a deterioration of the fibrillary network is noted, result in a reduction of dermal thickness. In addition, the activity of the collagenases increases in contrast to the synthesis of collagen fibers. Nor are cells spared during the aging process. We thus studied and compared the contractile capacity as well as the synthesis capacity of normal human fibroblasts and human fibroblasts obtained from biopsies of forehead wrinkles. The capacity of the fibroblasts to be adhered to the collagen network and to maintain a three-dimensional structure of dermis was studied on a model of equivalent dermis. The metabolic activity was studied by evaluating the capacities of synthesis of collagen I, main component of dermis. Human fibroblasts resulting from the forehead wrinkle contract less the gel of collagen than the normal human fibroblasts and present an activity of biosynthesis of collagen I less important than normal human fibroblasts. These results show that fibroblasts with aging present a deceleration of their metabolic activity and lose their capacity of adhesion to collagen fibers thus limiting the possibility of organizing the dermal tissue. We investigated the potential of an active ingredient able to compensate for the reduction of the metabolic activity and to restore the contractile capacity of fibroblasts obtained from forehead wrinkles. This effect was compared with a reference molecule: the vitamin C.

  • PDF

대장균의 동역학 네트워크 모델을 이용한 L-threonine 생합성에 관한 모사 연구 (Simulation Study of Dynamic Network Model for L-Threonine Biosynthesis in Escherichia coli)

  • 정의섭;이진원
    • Korean Chemical Engineering Research
    • /
    • 제44권1호
    • /
    • pp.97-105
    • /
    • 2006
  • 본 연구에서는 대장균 내에서 L-threonine의 생합성에 영향을 미치는 저해제들에 대한 모사 연구를 위하여 L-aspartate에서 L-threonine까지의 아미노산 생합성 대사 네트워크를 문헌 및 데이터베이스를 통해 구축하였다. 또한 L-threonine 생합성에 영향을 미치는 저해제들을 수학적으로 모델링하여 효소 반응식에 적용시켰다. 모사 연구를 위해 초기 농도값을 L-aspartate 5 mM, ATP 5 mM, NADPH 2 mM으로 설정하고 저해제의 농도 변화에 따른 세포내 대사 물질들의 농도변화를 확인하였다. 그 결과 저해제 L-lysine, L-methionine, L-glutamate는 저해제 농도 변화에 따라 대사 물질들의 농도 변화가 없었다. 그러나 저해제 L-serine, L-cysteine 그리고 L-threonine의 경우 저해제의 농도 변화에 따라 세포내 대사물질들의 농도 곡선이 서로 다른 결과를 얻었다. 대장균 내에서 소비되어진 L-aspartate의 농도는 세포 내 생성되는 L-threonine과는 관련이 없었고, 생성되는 L-threonine의 농도는 세포 내에 축적된 D,L-aspartic ${\beta}$-semialdehyde에 반비례하였다.

Stage specific transcriptome profiles at cardiac lineage commitment during cardiomyocyte differentiation from mouse and human pluripotent stem cells

  • Cho, Sung Woo;Kim, Hyoung Kyu;Sung, Ji Hee;Han, Jin
    • BMB Reports
    • /
    • 제54권9호
    • /
    • pp.464-469
    • /
    • 2021
  • Cardiomyocyte differentiation occurs through complex and finely regulated processes including cardiac lineage commitment and maturation from pluripotent stem cells (PSCs). To gain some insight into the genome-wide characteristics of cardiac lineage commitment, we performed transcriptome analysis on both mouse embryonic stem cells (mESCs) and human induced PSCs (hiPSCs) at specific stages of cardiomyocyte differentiation. Specifically, the gene expression profiles and the protein-protein interaction networks of the mESC-derived platelet-derived growth factor receptor-alpha (PDGFRα)+ cardiac lineage-committed cells (CLCs) and hiPSC-derived kinase insert domain receptor (KDR)+ and PDGFRα+ cardiac progenitor cells (CPCs) at cardiac lineage commitment were compared with those of mesodermal cells and differentiated cardiomyocytes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that the genes significantly upregulated at cardiac lineage commitment were associated with responses to organic substances and external stimuli, extracellular and myocardial contractile components, receptor binding, gated channel activity, PI3K-AKT signaling, and cardiac hypertrophy and dilation pathways. Protein-protein interaction network analysis revealed that the expression levels of genes that regulate cardiac maturation, heart contraction, and calcium handling showed a consistent increase during cardiac differentiation; however, the expression levels of genes that regulate cell differentiation and multicellular organism development decreased at the cardiac maturation stage following lineage commitment. Additionally, we identified for the first time the protein-protein interaction network connecting cardiac development, the immune system, and metabolism during cardiac lineage commitment in both mESC-derived PDGFRα+ CLCs and hiPSC-derived KDR+PDGFRα+ CPCs. These findings shed light on the regulation of cardiac lineage commitment and the pathogenesis of cardiometabolic diseases.

국민건강영양조사를 활용한 대사증후군 유병 예측모형 개발을 위한 융복합 연구: 데이터마이닝을 활용하여 (Development of Prediction Model for Prevalence of Metabolic Syndrome Using Data Mining: Korea National Health and Nutrition Examination Study)

  • 김한결;최근호;임성원;이현실
    • 디지털융복합연구
    • /
    • 제14권2호
    • /
    • pp.325-332
    • /
    • 2016
  • 이 연구의 목적은 국민건강영양조사 2012년 자료 중 40세 이상 성인의 대사증후군 유병 여부를 예측에 영향을 미치는 변수를 확인하고 이를 예측하는 모형 개발하는데 있다. 선행연구를 통해 모델 생성에 필요한 투입변수를 선정하였다. 연구결과 투입변수 중 사회경제적 요인이 상위 순위에 해당하였으며, 건강행위 요인의 경우 하위 순위로 나타났다. 또한, 최종 예측모형은 의사결정나무 (Decision Tree)일 경우 90. 32%의 가장 높은 예측력을 나타내고 있었다. 이 연구의 결과는 다음과 같은 시사점을 나타낸다. 먼저, 대사증후군에 대한 예방 및 관리에 있어 건강행위에 대한 접근과 함께 사회경제적 요인에 대한 접근도 병행을 고려해야 한다. 또한, 의사결정나무 알고리즘의 경우 결과해석의 용이성이 있어 보건의료분야에서 많이 사용되며, 선행연구의 결과와 마찬가지로 높은 예측정확도를 나타내고 있다.

The Construction of Regulatory Network for Insulin-Mediated Genes by Integrating Methods Based on Transcription Factor Binding Motifs and Gene Expression Variations

  • Jung, Hyeim;Han, Seonggyun;Kim, Sangsoo
    • Genomics & Informatics
    • /
    • 제13권3호
    • /
    • pp.76-80
    • /
    • 2015
  • Type 2 diabetes mellitus is a complex metabolic disorder associated with multiple genetic, developmental and environmental factors. The recent advances in gene expression microarray technologies as well as network-based analysis methodologies provide groundbreaking opportunities to study type 2 diabetes mellitus. In the present study, we used previously published gene expression microarray datasets of human skeletal muscle samples collected from 20 insulin sensitive individuals before and after insulin treatment in order to construct insulin-mediated regulatory network. Based on a motif discovery method implemented by iRegulon, a Cytoscape app, we identified 25 candidate regulons, motifs of which were enriched among the promoters of 478 up-regulated genes and 82 down-regulated genes. We then looked for a hierarchical network of the candidate regulators, in such a way that the conditional combination of their expression changes may explain those of their target genes. Using Genomica, a software tool for regulatory network construction, we obtained a hierarchical network of eight regulons that were used to map insulin downstream signaling network. Taken together, the results illustrate the benefits of combining completely different methods such as motif-based regulatory factor discovery and expression level-based construction of regulatory network of their target genes in understanding insulin induced biological processes and signaling pathways.