• Title/Summary/Keyword: Metabolic Hormones

Search Result 97, Processing Time 0.028 seconds

Modulation of the Somatotropic Axis in Periparturient Dairy Cows

  • Kim, Jin Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.1
    • /
    • pp.147-154
    • /
    • 2014
  • This review focuses on modulation of growth hormone (GH) and its downstream actions on periparturient dairy cows undergoing physiological and metabolic adaptations. During the periparturient period, cows experience a negative energy balance implicating that the feed intake does not meet the total energy demand for the onset of lactation. To regulate this metabolic condition, key hormones of somatotropic axis such as GH, IGF-I and insulin must coordinate adaptations required for the preservation of metabolic homeostasis. The hepatic GHR1A transcript and GHR protein are reduced at parturition, but recovers on postpartum. However, plasma IGF-I concentration remains low even though hepatic abundance of the GHR and IGF-I mRNA return to pre-calving value. This might be caused by alternation in IGFBPs and ALS genes, which consequently affect the plasma IGF-I stability. Plasma insulin level declines in a parallel manner with the decrease in plasma IGF-I after parturition. Increased GH stimulates the lipolytic effects and hepatic glucose synthesis to meet the energy requirement for mammary lactose synthesis, suggesting that GH antagonizes insulin-dependent glucose uptake and attenuates insulin action to decrease gluconeogenesis.

PET Radiopharmaceuticals for Tumor Imaging (종양 영상을 위한 PET 방사성의약품)

  • Choe, Yearn-Seong
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.1
    • /
    • pp.8-18
    • /
    • 2002
  • Early and accurate diagnosis of tumors using positron omission tomography (PET) has been the focus of considerable interest due to its high metastasis and mortality rates at late detection. PET radiopharmaceuticals-which exhibit a high tumor-to-background uptake ratio, and appropriate metabolic characteristics, and pharmacokinetics-are attractive tools for tumor imaging. Tumor imaging by these radiopharmaceuticals are based on metabolic and receptor imaging. The former is based on accelerated metabolism in tumor tissue compared to normal tissue and the rate roughly corresponding to the rate of growth of tumors. Radiopharmaceuticals for this purpose include radiolabeled sugars, amino acids, and nucleosides which detect increased glucose utilization, protein synthesis, and DNA synthesis, respectively. Tumor receptor imaging is based on the proliferation of tumor cells regulated by many hormones and growth factors, which bind to the corresponding receptors and exhibit the biological responses Radiopharmaceuticals used to image the tumor receptor systems may be ligands for the specific receptors and antibodies for the growth factor receptors. Some antitumor agents have been labeled with radionuclides and used to study in vivo biodistribution and pharmacokinetics in humans. This overview describes typical PET radiopharmaceuticals used for tumor imaging based on their uptake mechanisms.

Serum Cholesterol and 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase (혈청 콜레스테롤과 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase)

  • Choi, Yong-Soon;Lee, Sang-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.5
    • /
    • pp.580-593
    • /
    • 1992
  • Cholesterol have many essential functions as a component of cellular and subcellular membranes, metabolic precursor of bile acids and steroid hormones, and obligatory part of the metabolic systems involved in DNA synthesis and cell division. These essential funtions demand a continuous and appropriate supply of cholesterol to the tissues. Body cholesterol pool is maintained by the balance of acquirement from diets, de novo synthesis, and excretion either as bile acids or neutral steroids. In these metabolic process, cholesterol biosynthesis is controlled by the change in the activity of 3-hydroxy-3methylglutaryl coenzyme A (HMG-CoA) reductase. Under most physiological or nutritional situations, the activity of this enzyme is adroitly regulated to maintain tissue cholesterol balance. Excess cholesterol accumulation in the cells induces the decrease in the number of LDL-receptor, followed by the increase in the level of serum LDL-cholesterol. Increase in the level of serum cholesterol appears to be an important determinant for the incidence of the coronary heart disease. Dietary intervention may be helpful in alleviating an increase in the level of serum cholesterol or body cholesterol pool.

  • PDF

Ovariectomy, but not orchiectomy, exacerbates metabolic syndrome after maternal high-fructose intake in adult offspring

  • Kim, Mina;Kim, Inkyeom
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.1
    • /
    • pp.39-49
    • /
    • 2021
  • High fructose diet is associated with the global metabolic syndrome (MtS) pandemic. MtS develops in early life, depending on prenatal and postnatal nutritional status. We hypothesized that ovariectomy increases the chances of developing MtS in adult offspring following high fructose intake by the mother. Pregnant C57BL/6J mouse dams drank water with or without 20% fructose during pregnancy and lactation. After weaning, the pups were fed regular chow. The offspring were evaluated until they were 7 months of age after the mice in each group, both sexes, were gonadectomized at 4 weeks of age. The offspring (both sexes) of the dams who had high fructose intake developed MtS. In the offspring of dams who drank tap water, orchiectomy increased the body weight gain and body fat accumulation, while ovariectomy increased the body fat accumulation as compared to the sham controls. In the offspring of dams with high fructose intake, orchiectomy decreased the body weight gain, body fat accumulation, visceral adiposity, and glucose intolerance, while ovariectomy exacerbated all of them as compared to the sham operations. These data indicate that ovariectomy encourages the development of MtS in adult offspring after maternal high fructose intake, while orchiectomy prevents the development of MtS. The sex difference indicates that male and female sex hormones play contradictory roles in the development of MtS.

High-fat Intake is Associated with Alteration of Peripheral Circadian Clock Gene Expression (고지방식이에 의한 말초 생체시계 유전자 발현 변화)

  • Park, Hyun-Ki;Park, Jae-Yeo;Lee, Hyangkyu
    • Journal of Korean Biological Nursing Science
    • /
    • v.18 no.4
    • /
    • pp.305-317
    • /
    • 2016
  • Purpose: Recent studies demonstrated disruption of the circadian clock gene is associated with the development of obesity and metabolic syndrome. Obesity is often caused by the high calorie intake, In addition, the chronic stress tends to contribute to the increased risk for obesity. To evaluate the molecular mechanisms, we examined the expression of circadian clock genes in high fat diet-induced mice models with the chronic stress. Methods: C57BL/6J mice were fed with a 45% or 60% high fat diet for 8 weeks. Daily immobilization stress was applied to mice fed with a 45% high fat for 16 weeks. We compared body weight, food consumption, hormone levels and metabolic variables in blood. mRNA expression levels of metabolic and circadian clock genes in both fat and liver were determined by quantitative RT-PCR. Results: The higher fat content induced more severe hyperglycemia, hyperlipidemia and hyperinsulinemia, and these results correlated with their relevant gene expressions in fat and liver tissues. Chronic stress had only minimal effects on metabolic variables, but it altered the expression patterns of metabolic and circadian clock genes. Conclusion: These results suggest that the fat metabolism regulates the function of the circadian clock genes in peripheral tissues, and stress hormones may contribute to its regulation.

Changes of Stress Response and Physiological Metabolic Activity of Flounder, Paralichthys olivaceus Following to Food Deprivation and Slow Temperature Descending (먹이제한과 단기 수온하강 조건에서 넙치의 스트레스 반응과 생리학적 대사활성 변화)

  • Myeong, Jeong-In;Kang, Duk-Young;Kim, Hyo-Chan;Lee, Jeong-Ho;Noh, Jae-Koo;Kim, Hyun-Chul
    • Korean Journal of Ichthyology
    • /
    • v.23 no.2
    • /
    • pp.87-94
    • /
    • 2011
  • To find the preliminary environmental conditions for a short-time transport of living olive flounder, Paralichthys olivaceus, the stress response and physiological metabolic activity of the cultured fish to feed deprivation and slow temperature descending ($15.8^{\circ}C{\rightarrow}13.3^{\circ}C$) were monitored for 8 days. The monitored variables were the plasma alanine aminotransferase (ALT), aspartate aminotransferase (AST), glucose (GLU), total protein (TP), electrolytes ($Na^+$, $K^+$, $Cl^-$) and thyroid hormones ($TT_4$, $TT_3$, $FT_4$ and $FT_3$). In food deprivation experiment for 8 days, we did not find any statistical change of level in AST, ALT and electrolytes ($Na^+$, $K^+$, $Cl^-$), but found a significant decrease in TP and GLU. In thyroid hormones, the levels of four hormones in plasma were all showing a tendency to decrease. Especially, $FT_4$ and $TT_3$ were significantly decreased, indicating a withering of physiologic activity. In the temperature test, although no any significant change in AST, TP and electrolytes ($Na^+$, $K^+$, $Cl^-$), we observed a significant decrease of ALT and GLU following to temperature descending from $15.8^{\circ}C$ to $13.3^{\circ}C$ (P<0.05). In the levels of thyroid hormones, any significant change was not observed for experimental period. We conclude that the stress response and physiological activity of olive flounder were more influenced by feed deprivation than slow temperature descending at a transport of living fish, and plasma GLU appears to be sensitive factor to physiological metabolic activity, indicating that it could be used as a monitering mark or index for a health inspection of the fish.

Free-fatty-acid-regulating effects of fermented red ginseng are mediated by hormones and by the autonomic nervous system

  • Lee, Kwang Jo;Ji, Geun Eog
    • Journal of Ginseng Research
    • /
    • v.38 no.2
    • /
    • pp.97-105
    • /
    • 2014
  • Background: Understanding what causes changes in the flux of free fatty acids (FFA) is important to elucidate the etiology of metabolic syndrome. The first aim of this study was to test whether or not hormones and the autonomic nervous system influence blood FFA levels. A secondary aim was to test by means of a multiple group path analysis whether the consumption of fermented red ginseng (FRG; Panax ginseng) would influence those causal relationships. Methods: Ninety-three postmenopausal women (age 50e73 yr) were randomly divided into two groups. One group (44 women; age, $58.4{\pm}5.9yr$; body mass index, $3.6{\pm}2.5kg/m^2$) was supplied place capsules and the other group (49 women, age $58.4{\pm}5.5yr$; body mass index, $22.9{\pm}2.4kg/m^2$) was supplied FRG capsules. Both prior to and after the study (2 wk), blood samples were collected from the participants and several blood variables were measured and analyzed. Results: Squared multiple correlations of FFA were 0.699 in the placebo group and 0.707 in the FRG group. The unstandardized estimate of estradiol (E2) for FFA was 0.824 in both groups. Conclusion: The path coefficients of cortisol and the branchial pulse for FFA were significantly different between the FRG group and the placebo group.

Thyroid Hormones and Thyroid Function status in each clinical phase of Korean Hemorrhagic Fever (한국형 출혈열의 임상경과에 따른 갑상선홀몬의 변동)

  • Shin, Young-Tai;Jeon, Byung-Sook;Yoon, Sung-Yeul;Lee, Houn-Young;Kim, Sam-Yong;Ro, Heung-Kyu
    • The Korean Journal of Nuclear Medicine
    • /
    • v.17 no.1
    • /
    • pp.63-69
    • /
    • 1983
  • Fifteen cases of Korean hemorrhagic fever who were admitted Chungnam National University Hospital from October 1981 to December 1981 were analysed on the evaluation of metabolic.changes of the thyroid hormones, and thyroid function status in each clinical phase. 1. Serum $T_3,\;T_4$ concentratron, $FT_4I\;and\;T_4/TBG$ ratio were significantly lower (p<0.001, p<0.005, p<0.005, p<0.001, respectively) than control group in oliguric and early diuretic phase of Korean hemorrhagic fever. With the recovery of illness, abnormal thyroid hormones and thyroid function indices tend to become normal range. But Serum $FT_4$, TSH and TBG concentration were within normal range in all phase of KHF. Thus in Korean hemorrhagic fever, euthyroidism is probably maintained by normal or elevated serum $FT_4$ 2. $T_4/T_3\;and\;rT_3/T_3$ rato (p<0.005, p<0.005) were increased in oliguric and early diuretic phase of KHF. These results might be explained by decreased peripheral conversion of $T_4\;to\;T_3$ in oliguric and early diuretic phase.

  • PDF

Follicular fluid cerebellin and betatrophin regulate the metabolic functions of growing follicles in polycystic ovary syndrome

  • Ersahin, Aynur Adeviye;Acet, Mustafa;Ersahin, Suat Suphan;Acet, Tuba;Yardim, Meltem;Kenanoglu, Omer;Aydin, Suleyman
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.44 no.1
    • /
    • pp.33-39
    • /
    • 2017
  • Objective: The aim of this study was to assess the changes of follicular fluid (FF) and serum levels of cerebellin precursor protein 1 (cbln1) and betatrophin in patients with polycystic ovary syndrome (PCOS) undergoing in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) with a gonadotropin-releasing hormone (GnRH) antagonist protocol. Methods: Twenty infertile women with PCOS and 20 control women diagnosed as poor responders undergoing ovarian stimulation with a GnRH antagonist were included. Blood samples were obtained during ovum pick-up. Follicular fluid from a dominant follicle was collected from the subjects. Using enzyme-linked immunosorbent assays, FF and serum levels of cbln1 and betatrophin were measured in both groups of participants. Metabolic and hormonal parameters were also determined and correlated with each other. Results: Both groups of women had similar serum and FF betatrophin levels ($55.0{\pm}8.9ng/mL$ vs. $53.1{\pm}10.3ng/mL$, p=0.11). The serum and FF betatrophin levels of poor responders were found to be similar ($49.9{\pm}5.9ng/mL$ vs. $48.9{\pm}10.7ng/mL$, p=0.22). Conversely, the FF cbln1 levels of PCOS women were found to be significantly higher than the serum cbln1 levels ($589.1{\pm}147.6ng/L$ vs. $531.7{\pm}74.3ng/L$, p<0.02). The FF cbln1 levels of control participants without PCOS were significantly higher than their serum cbln1 levels ($599.3{\pm}211.5ng/L$ vs. $525.3{\pm}87.0ng/L$, p=0.01). Positive correlations were detected among body mass index, insulin resistance, serum insulin, total testosterone, and betatrophin levels in the PCOS group. Conclusion: Follicular fluid betatrophin and cbln1 concentrations may play a pivotal role on follicular growth in PCOS subjects undergoing IVF/ICSI with an antagonist protocol.

Momordica charantia extract supplementation tend to affect improvements in body composition and metabolic parameters on tennis players: A pilot study

  • Kwak, Jae-Jun;Yook, Jang Soo;Ha, Min-Seong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.1164-1171
    • /
    • 2019
  • Dietary supplements derived from natural sources are an essential factor in optimizing athletic performance. It has been proposed that the extract of Momordica charantia (M. charantia) that is known as a bitter melon can be potentially used as a novel supplement for health promotion. This pilot study aimed to examine the effects of the M. charantia extract when administered in the form of a sports drink, and we evaluated changes in body composition and metabolic factors in tennis players after 4-week consumption of the extract. Eight male college tennis players were instructed to consume an M. charantia extract 6 times per day (3 in the morning and 3 in the afternoon, and the total daily intake was 600 ml). Collected data were analyzed using paired t-tests to examine the changes over time after consumption of the M. charantia extract. The results revealed a significant increase in the trunk muscle mass, basal metabolic rate, and daily calorie intake (p < 0.05). Levels of protein, minerals, and total body water showed an increased tendency (not statistically significant), whereas intracellular water and extracellular water showed a decreased trend. Furthermore, fat-free mass, skeletal muscle mass, and muscle mass showed an increased tendency. In conclusion, consumption of the M. charantia extract caused an increase in parameters related to protein, muscle mass, and metabolism. It seems that follow-up studies related to fatigue, inflammation, and stress hormones related to the M. charantia extract consumption would be needed.