References
- Bray GA. Fructose: should we worry? Int J Obes (Lond). 2008;32 Suppl 7:S127-S131. https://doi.org/10.1038/ijo.2008.248
- Tappy L, Le KA. Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev. 2010;90:23-46. https://doi.org/10.1152/physrev.00019.2009
- Marriott BP, Cole N, Lee E. National estimates of dietary fructose intake increased from 1977 to 2004 in the United States. J Nutr. 2009;139:1228S-1235S. https://doi.org/10.3945/jn.108.098277
- Withrow D, Alter DA. The economic burden of obesity worldwide: a systematic review of the direct costs of obesity. Obes Rev. 2011;12: 131-141. https://doi.org/10.1111/j.1467-789X.2009.00712.x
- Ferder L, Ferder MD, Inserra F. The role of high-fructose corn syrup in metabolic syndrome and hypertension. Curr Hypertens Rep. 2010;12:105-112. https://doi.org/10.1007/s11906-010-0097-3
- Fontaine KR, Barofsky I. Obesity and health-related quality of life. Obes Rev. 2001;2:173-182. https://doi.org/10.1046/j.1467-789X.2001.00032.x
- Osei K, Falko J, Bossetti BM, Holland GC. Metabolic effects of fructose as a natural sweetener in the physiologic meals of ambulatory obese patients with type II diabetes. Am J Med. 1987;83:249-255. https://doi.org/10.1016/0002-9343(87)90693-0
- Kolderup A, Svihus B. Fructose metabolism and relation to atherosclerosis, type 2 diabetes, and obesity. J Nutr Metab. 2015;2015: 823081. https://doi.org/10.1155/2015/823081
- Dupas J, Feray A, Goanvec C, Guernec A, Samson N, Bougaran P, Guerrero F, Mansourati J. Metabolic syndrome and hypertension resulting from fructose enriched diet in Wistar rats. Biomed Res Int. 2017;2017:2494067. https://doi.org/10.1155/2017/2494067
- Kim M, Do GY, Kim I. Activation of the renin-angiotensin system in high fructose-induced metabolic syndrome. Korean J Physiol Pharmacol. 2020;24:319-328. https://doi.org/10.4196/kjpp.2020.24.4.319
- Le KA, Tappy L. Metabolic effects of fructose. Curr Opin Clin Nutr Metab Care. 2006;9:469-475. https://doi.org/10.1097/01.mco.0000232910.61612.4d
- Bizeau ME, Pagliassotti MJ. Hepatic adaptations to sucrose and fructose. Metabolism. 2005;54:1189-1201. https://doi.org/10.1016/j.metabol.2005.04.004
- Seong HY, Cho HM, Kim M, Kim I. Maternal high-fructose intake induces multigenerational activation of the renin-angiotensinaldosterone system. Hypertension. 2019;74:518-525. https://doi.org/10.1161/hypertensionaha.119.12941
- Sloboda DM, Li M, Patel R, Clayton ZE, Yap C, Vickers MH. Early life exposure to fructose and offspring phenotype: implications for long term metabolic homeostasis. J Obes. 2014;2014:203474. https://doi.org/10.1155/2014/203474
- Clayton ZE, Vickers MH, Bernal A, Yap C, Sloboda DM. Early life exposure to fructose alters maternal, fetal and neonatal hepatic gene expression and leads to sex-dependent changes in lipid metabolism in rat offspring. PLoS One. 2015;10:e0141962. https://doi.org/10.1371/journal.pone.0141962
- Zheng J, Feng Q, Zhang Q, Wang T, Xiao X. Early life fructose exposure and its implications for long-term cardiometabolic health in offspring. Nutrients. 2016;8:685. https://doi.org/10.3390/nu8110685
- Song A, Astbury S, Hoedl A, Nielsen B, Symonds ME, Bell RC. Lifetime exposure to a constant environment amplifies the impact of a fructose-rich diet on glucose homeostasis during pregnancy. Nutrients. 2017;9:327. https://doi.org/10.3390/nu9040327
- Tain YL, Chan JY, Hsu CN. Maternal fructose intake affects transcriptome changes and programmed hypertension in offspring in later life. Nutrients. 2016;8:757. https://doi.org/10.3390/nu8120757
- Tain YL, Lee WC, Wu KLH, Leu S, Chan JYH. Maternal high fructose intake increases the vulnerability to post-weaning high-fat dietinduced programmed hypertension in male offspring. Nutrients. 2018;10:56. https://doi.org/10.3390/nu10010056
- Cho HM, Lee HA, Kim HY, Han HS, Kim IK. Expression of Na+-K+-2Cl- cotransporter 1 is epigenetically regulated during postnatal development of hypertension. Am J Hypertens. 2011;24:1286-1293. https://doi.org/10.1038/ajh.2011.136
- Koo S, Kim M, Cho HM, Kim I. Maternal high-fructose intake during pregnancy and lactation induces metabolic syndrome in adult offspring. Nutr Res Pract. 2020;14:e71.
- Ehrenthal DB, Maiden K, Rao A, West DW, Gidding SS, Bartoshesky L, Carterette B, Ross J, Strobino D. Independent relation of maternal prenatal factors to early childhood obesity in the offspring. Obstet Gynecol. 2013;121:115-121. https://doi.org/10.1097/AOG.0b013e318278f56a
- Zhang S, Wang L, Leng J, Liu H, Li W, Zhang T, Li N, Li W, Tian H, Baccarelli AA, Hou L, Hu G. Hypertensive disorders of pregnancy in women with gestational diabetes mellitus on overweight status of their children. J Hum Hypertens. 2017;31:731-736. https://doi.org/10.1038/jhh.2017.17
- Rodriguez L, Otero P, Panadero MI, Rodrigo S, Alvarez-Millan JJ, Bocos C. Maternal fructose intake induces insulin resistance and oxidative stress in male, but not female, offspring. J Nutr Metab. 2015;2015:158091. https://doi.org/10.1155/2015/158091
- Lee WC, Tain YL, Wu KL, Leu S, Chan JY. Maternal fructose exposure programs metabolic syndrome-associated bladder overactivity in young adult offspring. Sci Rep. 2016;6:34669. https://doi.org/10.1038/srep34669
- Zou M, Arentson EJ, Teegarden D, Koser SL, Onyskow L, Donkin SS. Fructose consumption during pregnancy and lactation induces fatty liver and glucose intolerance in rats. Nutr Res. 2012;32:588-598. https://doi.org/10.1016/j.nutres.2012.06.012
- Chen L, Xie YM, Pei JH, Kuang J, Chen HM, Chen Z, Li ZW, Fu XY, Wang L, Lai SQ, Zhang ST, Chen ZJ, Lin JX. Sugar-sweetened beverage intake and serum testosterone levels in adult males 20-39 years old in the United States. Reprod Biol Endocrinol. 2018;16:61. https://doi.org/10.1186/s12958-018-0378-2
- Munetsuna E, Yamada H, Yamazaki M, Ando Y, Mizuno G, Ota T, Hattori Y, Sadamoto N, Suzuki K, Ishikawa H, Hashimoto S, Ohashi K. Maternal fructose intake disturbs ovarian estradiol synthesis in rats. Life Sci. 2018;202:117-123. https://doi.org/10.1016/j.lfs.2018.04.006
- Bundalo MM, Zivkovic MD, Romic SDj, Tepavcevic SN, Koricanac GB, Djuric TM, Stankovic AD. Fructose-rich diet induces gender-specific changes in expression of the renin-angiotensin system in rat heart and upregulates the ACE/AT1R axis in the male rat aorta. J Renin Angiotensin Aldosterone Syst. 2016;17:1470320316642915.
- Vasudevan H, Xiang H, McNeill JH. Differential regulation of insulin resistance and hypertension by sex hormones in fructose-fed male rats. Am J Physiol Heart Circ Physiol. 2005;289:H1335-H1342. https://doi.org/10.1152/ajpheart.00399.2005
- Song D, Arikawa E, Galipeau D, Battell M, McNeill JH. Androgens are necessary for the development of fructose-induced hypertension. Hypertension. 2004;43:667-672. https://doi.org/10.1161/01.hyp.0000118018.77344.4e
- Vasudevan H, Yuen VG, McNeill JH. Testosterone-dependent increase in blood pressure is mediated by elevated Cyp4A expression in fructose-fed rats. Mol Cell Biochem. 2012;359:409-418. https://doi.org/10.1007/s11010-011-1035-7
- Sharma N, Li L, Ecelbarger CM. Sex differences in renal and metabolic responses to a high-fructose diet in mice. Am J Physiol Renal Physiol. 2015;308:F400-F410. https://doi.org/10.1152/ajprenal.00403.2014
- Yoo S, Ahn H, Park YK. High dietary fructose intake on cardiovascular disease related parameters in growing rats. Nutrients. 2016; 9:11. https://doi.org/10.3390/nu9010011
- Tran LT, Yuen VG, McNeill JH. The fructose-fed rat: a review on the mechanisms of fructose-induced insulin resistance and hypertension. Mol Cell Biochem. 2009;332:145-159. https://doi.org/10.1007/s11010-009-0184-4
- Ha V, Sievenpiper JL, de Souza RJ, Chiavaroli L, Wang DD, Cozma AI, Mirrahimi A, Yu ME, Carleton AJ, Dibuono M, Jenkins AL, Leiter LA, Wolever TM, Beyene J, Kendall CW, Jenkins DJ. Effect of fructose on blood pressure: a systematic review and meta-analysis of controlled feeding trials. Hypertension. 2012;59:787-795. https://doi.org/10.1161/HYPERTENSIONAHA.111.182311
- Simchon S, Manger WM, Carlin RD, Peeters LL, Rodriguez J, Batista D, Brown T, Merchant NB, Jan KM, Chien S. Salt-induced hypertension in Dahl salt-sensitive rats. Hemodynamics and renal responses. Hypertension. 1989;13(6 Pt 1):612-621. https://doi.org/10.1161/01.hyp.13.6.612
- Cho HM, Kim I. Maternal high-fructose intake induces hypertension through activating histone codes on the (pro)renin receptor promoter. Biochem Biophys Res Commun. 2020;527:596-602. https://doi.org/10.1016/j.bbrc.2020.04.081
- Kanchuk ML, Backus RC, Calvert CC, Morris JG, Rogers QR. Weight gain in gonadectomized normal and lipoprotein lipasedeficient male domestic cats results from increased food intake and not decreased energy expenditure. J Nutr. 2003;133:1866-1874. https://doi.org/10.1093/jn/133.6.1866
- Shimizu H, Ohtani KI, Uehara Y, Abe Y, Takahashi H, Tsuchiya T, Sato N, Ibuki Y, Mori M. Orchiectomy and response to testosterone in the development of obesity in young Otsuka-Long-EvansTokushima Fatty (OLETF) rats. Int J Obes Relat Metab Disord. 1998;22:318-324. https://doi.org/10.1038/sj.ijo.0800586
- Vogel H, Mirhashemi F, Liehl B, Taugner F, Kluth O, Kluge R, Joost HG, Schürmann A. Estrogen deficiency aggravates insulin resistance and induces β-cell loss and diabetes in female New Zealand obese mice. Horm Metab Res. 2013;45:430-435. https://doi.org/10.1055/s-0032-1331700
- Chukijrungroat N, Khamphaya T, Weerachayaphorn J, Songserm T, Saengsirisuwan V. Hepatic FGF21 mediates sex differences in high-fat high-fructose diet-induced fatty liver. Am J Physiol Endocrinol Metab. 2017;313:E203-E212. https://doi.org/10.1152/ajpendo.00076.2017
- Tain YL, Lee WC, Leu S, Wu K, Chan J. High salt exacerbates programmed hypertension in maternal fructose-fed male offspring. Nutr Metab Cardiovasc Dis. 2015;25:1146-1151. https://doi.org/10.1016/j.numecd.2015.08.002
- Zhu L, Martinez MN, Emfinger CH, Palmisano BT, Stafford JM. Estrogen signaling prevents diet-induced hepatic insulin resistance in male mice with obesity. Am J Physiol Endocrinol Metab. 2014;306:E1188-E1197. https://doi.org/10.1152/ajpendo.00579.2013
- Pedersen SB, Borglum JD, Eriksen EF, Richelsen B. Nuclear estradiol binding in rat adipocytes. Regional variations and regulatory influences of hormones. Biochim Biophys Acta. 1991;1093:80-86. https://doi.org/10.1016/0167-4889(91)90141-J
- Mauvais-Jarvis F, Clegg DJ, Hevener AL. The role of estrogens in control of energy balance and glucose homeostasis. Endocr Rev. 2013;34:309-338. https://doi.org/10.1210/er.2012-1055
- López M, Tena-Sempere M. Estrogens and the control of energy homeostasis: a brain perspective. Trends Endocrinol Metab. 2015; 26:411-421. https://doi.org/10.1016/j.tem.2015.06.003
- Treiser SL, Wardlaw SL. Estradiol regulation of proopiomelanocortin gene expression and peptide content in the hypothalamus. Neuroendocrinology. 1992;55:167-173. https://doi.org/10.1159/000126111
- Kapoor D, Jones TH. Androgen deficiency as a predictor of metabolic syndrome in aging men: an opportunity for intervention? Drugs Aging. 2008;25:357-369. https://doi.org/10.2165/00002512-200825050-00001
- Fan W, Yanase T, Nomura M, Okabe T, Goto K, Sato T, Kawano H, Kato S, Nawata H. Androgen receptor null male mice develop late-onset obesity caused by decreased energy expenditure and lipolytic activity but show normal insulin sensitivity with high adiponectin secretion. Diabetes. 2005;54:1000-1008. https://doi.org/10.2337/diabetes.54.4.1000
- Xu YXZ, Ande SR, Mishra S. Gonadectomy in Mito-Ob mice revealed a sex-dimorphic relationship between prohibitin and sex steroids in adipose tissue biology and glucose homeostasis. Biol Sex Differ. 2018;9:37. https://doi.org/10.1186/s13293-018-0196-4
- Gali Ramamoorthy T, Allen TJ, Davies A, Harno E, Sefton C, Murgatroyd C, White A. Maternal overnutrition programs epigenetic changes in the regulatory regions of hypothalamic Pomc in the offspring of rats. Int J Obes (Lond). 2018;42:1431-1444. https://doi.org/10.1038/s41366-018-0094-1