• Title/Summary/Keyword: Metabolic Cycle

Search Result 173, Processing Time 0.024 seconds

Current status on carbon metabolic engineering in plants (식물의 탄소대사공학 연구동향)

  • Kim, Dong-Hern;Lee, Si-Myung;Park, Jong-Suk;Kim, Soo-Jin;Kim, Beom-Ki;Yun, In-Sun;Kim, Dul-I;Byun, Myung-Ok
    • Journal of Plant Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.205-211
    • /
    • 2010
  • Yield productivity of staple crops must be increased at least 50% by 2050, in order to feed the world population which is expected to reach 90 billions. Photosynthetic carbon assimilation and carbohydrate metabolism leading to the production of starch would be the final frontier to quest for new sources of technology enabling such a drastic increase of crop productivity. In this review, attempts to genetically engineer plant photosynthetic carbon reduction cycle and metabolic pathways to increase starch production are introduced.

Ovarian volume is more closely related to the different manifestations of polycystic ovary syndrome than follicle number per ovary

  • Shazia Afrine;Jasmine Ara Haque;Md Shahed Morshed;Hurjahan Banu;Ahmed Hossain;Muhammad Abul Hasanat
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.50 no.3
    • /
    • pp.200-205
    • /
    • 2023
  • Objective: Polycystic ovary (PCO), a diagnostic component of polycystic ovary syndrome (PCOS), requires either an ovarian volume (OV) criterion or a follicle number per ovary (FNPO) criterion. This study investigated the association of OV and FNPO criteria with various manifestations of PCOS. Methods: This cross-sectional study was conducted at a university hospital among 100 patients newly diagnosed with PCOS (according to the revised Rotterdam criteria). Fasting blood samples were collected to measure glucose, total testosterone (TT), luteinizing hormone (LH), follicle-stimulating hormone (FSH), lipid, insulin, and hemoglobin A1c levels. An oral glucose tolerance test was performed. Transabdominal or transvaginal ultrasound of the ovaries was done, depending on patients' marital status. All investigations were conducted in the follicular phase of the menstrual cycle. OV >10 mL and/or FNPO ≥12 indicated PCO. A homeostasis model assessment of insulin resistance (IR) value ≥2.6 indicated IR, and metabolic syndrome (MS) was defined according to the international harmonization criteria. Results: Seventy-six participants fulfilled the OV criterion, 70 fulfilled the FNPO criterion, and 89 overall had PCO. Both maximum OV and mean OV had a significant correlation with TT levels (r=0.239, p=0.017 and r=0.280, p=0.005, respectively) and the LH/FSH ratio (r=0.212, p=0.034 and r=0.200, p=0.047, respectively). Mean OV also had a significant correlation with fasting insulin levels (r=0.210, p=0.036). Multivariate binary logistic regression analysis showed that IR (odds ratio [OR], 9.429; 95% confidence interval [CI], 1.701 to 52.271; p=0.010) and MS (OR, 7.952; 95% CI, 1.821 to 34.731; p=0.006) had significant predictive associations with OV alone, even after adjustment for age and body mass index. Conclusion: OV may be more closely related to the androgenic and metabolic characteristics of PCOS than FNPO.

Successful treatment of a child with citrullinemia

  • Lee, Key-Hyoung;Park, Moon-Sung;Hahn, Si-Hoon
    • Journal of Genetic Medicine
    • /
    • v.1 no.1
    • /
    • pp.5-10
    • /
    • 1997
  • The amino acids formed by degradation of proteins ingested produce ammonia. The ammonia which is broken down and excreted as urea through a process known as the Klebs-Hensleit cycle or the urea cycle (Rezvani, 1995). The urea cycle consists of five enzymes necessary for the synthesis of carbamyl phosphate, citrulline, argininosuccinate, arginine, and urea: carbamyl phosphate synthetase (CPS), ornithine transcarbamylase (OTC), argininosuccinate synthetase (AS), argininosuccinate lyase (AL), and arginase (ARG) (Lloyd, 1992). Congenital deficiencies of the enzymes involved in the urea cycle are diseases that are almost fatal without treatment, showing symptoms like vomiting, lethargy, dyspnea, and coma due to hyperammonemia coming from the accumulation of ammonia and metabolic precursors resulting from the deficiency of one of these enzymes (Batshaw and Brusilow, 1983). Among these, the disease manifested by the congenital deficiency of argininosuccinate synthetase (AS) which is associated with the formation of argininosuccinate in citrulline is called argininosuccinate synthetase deficiency or citrullinemia. There have been two reports on this so far in Korea; one in July 1987 by Kim et al. and the other by Park et al. in 1995. We are to report a case of successful treatment of a child with citrullinemia who was transferred to our hospital due to dyspnea, lethargy, feeding difficulties, convulsions and cyanosis together with some document studies related to this case.

  • PDF

Metabolic Characteristic of the Liver of Dairy Cows during Ketosis Based on Comparative Proteomics

  • Xu, Chuang;Wang, Zhe;Liu, Guowen;Li, Xiaobing;Xie, Guanghong;Xia, Cheng;Zhang, Hong You
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.7
    • /
    • pp.1003-1010
    • /
    • 2008
  • The objective of the present study was to identify differences in the expression levels of liver proteins between healthy and ketotic cows, establish a liver metabolic interrelationship of ketosis and elucidate the metabolic characteristics of the liver during ketosis. Liver samples from 8 healthy multiparous Hostein cows and 8 ketotic cows were pooled by health status and the proteins were separated by two-dimensional-electrophoresis (2D-E). Statistical analysis of gels was performed using PDQuest software 8.0. The differences in the expression levels of liver proteins (p<0.05) between ketotic and healthy cows were identified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF-TOF) tandem mass spectrometry. Five enzymes/proteins were identified as being differentially expressed in the livers of ketotic cows: expression of 3-hydroxyacyl-CoA dehydrogenase type-2 (HCDH), acetyl-coenzyme A acetyltransferase 2 (ACAT) and elongation factor Tu (EF-Tu) were down-regulated, whereas that of alpha-enolase and creatine kinase were up-regulated. On the basis of this evidence, it could be presumed that the decreased expression of HCDH, which is caused by high concentrations of acetyl-CoA in hepatic cells, in the livers of ketotic cows, implies reduced fatty acid ??oxidation. The resultant high concentrations of acetyl-CoA and acetoacetyl CoA would depress the level of ACAT and generate more ??hydroxybutyric acid; high concentrations of acetyl-CoA would also accelerate the Krebs Cycle and produce more ATP, which is stored as phosphocreatine, as a consequence of increased expression of creatine kinase. The low expression level of elongation factor Tu in the livers of ketotic cows indicates decreased levels of protein synthesis due to the limited availability of amino acids, because the most glucogenic amino acids sustain the glyconeogenesis pathway; thus increasing the level of alpha-enolase. Decreased protein synthesis also promotes the conversion of amino acids to oxaloacetate, which drives the Krebs Cycle under conditions of high levels of acetyl-CoA. It is concluded that the livers of ketotic cows possess high concentrations of acetyl-CoA, which through negative feedback inhibited fatty acid oxidation; show decreased fatty acid oxidation, ketogenesis and protein synthesis; and increased gluconeogenesis and energy production.

An Investigation Into the Relationship Between Metabolic Responses and Energy Regulation in Antibody-Producing Cell

  • Sun, Ya-Ting;Zhao, Liang;Ye, Zhao-Yang;Fan, Li;Liu, Xu-Ping;Tan, Wen-Song
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.11
    • /
    • pp.1586-1597
    • /
    • 2013
  • Energy-efficient metabolic responses were often noted in high-productive cultures. To better understand these metabolic responses, an investigation into the relationship between metabolic responses and energy regulation was conducted via a comparative analysis among cultures with different energy source supplies. Both glycolysis and glutaminolysis were studied through the kinetic analyses of major extracellular metabolites concerning the fast and slow cell growth stages, respectively, as well as the time-course profiles of intracellular metabolites. In three cultures showing distinct antibody productivities, the amino acid metabolism and energy state were further examined. Both the transition of lactate from production to consumption and steady intracellular pools of pyruvate and lactate were observed to be correlated with efficient energy regulation. In addition, an efficient utilization of amino acids as the replenishment for the TCA cycle was also found in the cultures with upregulated energy metabolism. It was further revealed that the inefficient energy regulation would cause low cell productivity based on the comparative analysis of cell growth and productivity in cultures having distinct energy regulation.

Enzymatic Characteristics of Biosynthesis and Degradation of Poly-$\beta$-hydroxybutyrate of Alcaligenes latus

  • Kim, Tae-Woo;Park, Jin-Seo;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.6
    • /
    • pp.425-431
    • /
    • 1996
  • The enzymatic characteristics of Alcaligenes latus were investigated by measuring the variations of various enzyme activities related to biosynthesis and degradation of poly-${\beta}$-hydroxybutyrate (PHB) during cultivation. All PHB biosynthetic enzymes, ${\beta}$-ketothiolase, acetoacetyl-CoA reductase, and PHB synthase, were activated gradually at the PHB accumulation stage, and the PHB synthase showed the highest value among three enzymes. This indicates that the rate of PHB biosynthesis is mainly controlled by either ${\beta}$-ketothiolase or acetoacetyl-CoA reductase rather than PHB synthase. The enzymatic activities related to the degradation of PHB were also measured, and the degradation of PHB was controlled by the activity of PHB depolymerase. The effect of supplements of metabolic regulators, citrate and tyrosine, was also investigated, and the activity of glucose-6-phosphate dehydrogenase was increased by metabolic regulators, especially by tyrosine. The activities of ${\beta}$-ketothiolase and acetoacetyl-CoA reductase were also activated by citrate and tyrosine, while the activity of PHB depolymerase was depressed. The increased rate and yield of PHB biosynthesis by metabolic regulators may be due to the increment of acetyl-CoA concentration either by the repression of the TCA cycle by citrate through product inhibition or by the activation of sucrose metabolism by the supplemented tyrosine.

  • PDF

Neurological Outcome of Patients with Late-onset Ornithine Transcarbamylase Deficiency (지발형 오르니틴 트랜스카바미라제 결핍증 환자들의 신경학적 예후)

  • Jang, Kyung Mi;Hwang, Su-Kyeong
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.22 no.1
    • /
    • pp.15-20
    • /
    • 2022
  • The most common urea cycle disorder is ornithine transcarbamylase deficiency. More than 80 percent of patients with symptomatic ornithine transcarbamylase deficiency are late-onset, which can present various phenotypes from infancy to adulthood. With no regards to the severity of the disease, characteristic fluctuating courses due to hyperammonemia may develop unexpectedly, and can be precipitated by various metabolic stressors. Late-onset ornithine transcarbamylase deficiency is not merely related to a type of genetic variation, but also to the complex relationship between genetic and environmental factors that result in hyperammonemia; therefore, it is difficult to predict the prevalence of neurological symptoms in late-onset ornithine transcarbamylase deficiency. Most common acute neurological manifestations include psychological changes, seizures, cerebral edema, and death; subacute neurological manifestations include developmental delays, learning disabilities, intellectual disabilities, attention-deficit/hyperactivity disorder, executive function deficits, and emotional and behavioral problems. This review aims to increase awareness of late-onset ornithine transcarbamylase deficiency, allowing for an efficient use of biochemical and genetic tests available for diagnosis, ultimately leading to earlier treatment of patients.

A Diagnostic Algorithm of Newborn Screening for Elevated Citrulline (고시트룰린혈증의 신생아 선별검사 후 진단 알고리즘)

  • Hong, Yong Hee;Ko, Jung Min;Lee, Kyung-A
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.16 no.2
    • /
    • pp.62-69
    • /
    • 2016
  • Newborn screening of some urea cycle disorders has little benefits because of early severe symptoms before the result, low sensitivity (especially hypocitrullinemia) and poor prognosis. But in case of citrullinemia, citrin deficiency and argininosuccinic aciduria diagnosed as elevated citrulline, newborn screening is helpful for early diagnosis and treatment before the symptom. Distinction between the clinical forms of these diseases is based on clinical findings and biochemical results, however, they may not be clearcut. Treatment is different from each other, so exact diagnosis is essential. Here, the diagnostic algorithm for elevated citrulline after tandem mass screening has been proposed. Minimizing total process time from sampling to report of the results is important in Korea for diagnosis and treatment of these disorders.

  • PDF

Metabolic Characterization of the Corynebacterium glutamicum using DNA Microarray Technology

  • Jo, Gwang-Myeong;Jang, Jae-U;Kim, Seong-Jun;Park, Yeong-Hun
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.739-740
    • /
    • 2001
  • DNA microarray with a set of 37 Corynebacterium glutamicum genes encoding enzymes for primary metabolism of glycolysis, TCA cycle and lysine biosynthesis, anaplerosis etc was constructed on slide glass in triplicate. With this DNA microarray, metabolic characteristics of the lysine-producing strain was analyzed during different phase of the cultivation. The major differences in using glucose as a carbon source instead of sucrose was found in the anaplerolytic enzymes, which control the interconversion of C3 and C4 metabolites. Also, the expression profile of these major enzymes was found to be quite distinct among different phases of growth.

  • PDF

Metabolic Engineering of Saccharomyces cerevisiae for Redox Balance of Xylose Fermentation

  • Kim, Soo Rin;Jin, Yong-Su
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.4
    • /
    • pp.199-202
    • /
    • 2014
  • The bioconversion of cellulosic biomass hydrolyzates consisting mainly of glucose and xylose requires the use of engineered Saccharomyces cerevisiae expressing a heterologous xylose pathway. However, there is concern that a fungal xylose pathway consisting of NADPH-specific xylose reductase (XR) and $NAD^+$-specific xylitol dehydrogenase (XDH) may result in a cellular redox imbalance. However, the glycerol biosynthesis and glycerol degradation pathways of S. cerevisiae, termed here as the glycerol cycle, has the potential to balance the cofactor requirements for xylose metabolism, as it produces NADPH by consuming NADH at the expense of one mole of ATP. Therefore, this study tested if the glycerol cycle could improve the xylose metabolism of engineered S. cerevisiae by cofactor balancing, as predicted by an in-silico analysis using elementary flux mode (EFM). When the GPD1 gene, the first step of the glycerol cycle, was overexpressed in the XR/XDH-expressing S. cerevisiae, the glycerol production significantly increased, while the xylitol and ethanol yields became negligible. The reduced xylitol yield suggests that enough $NAD^+$ was supplied for XDH by the glycerol cycle. However, the GPD1 overexpression completely shifted the carbon flux from ethanol to glycerol. Thus, moderate expression of GPD1 may be necessary to achieve improved ethanol production through the cofactor balancing.