• Title/Summary/Keyword: Metabolic Analysis

Search Result 1,511, Processing Time 0.033 seconds

Secondary Fermented Extract of Chaga-Cheonggukjang Attenuates the Effects of Obesity and Suppresses Inflammatory Response in the Liver and Spleen of High-Fat Diet-Induced Obese Mice

  • Na, Ha Gyoon;Park, Yuna;Kim, Min-Ah;Lee, Jin Woo;So, Gyeongseop;Kim, Sung Hyeok;Jang, Ki-Hyo;Kim, Mi-Ja;Namkoong, Seung;Koo, Hyun Jung;Lee, Sung Ryul;Sohn, Eun-Hwa
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.5
    • /
    • pp.739-748
    • /
    • 2019
  • Cheonggukjang and chaga mushrooms have numerous health benefits, and have been used in alternative medicine. Therefore, a powder mixture of 98: Cheonggukjang and 2: Chaga extracts was fermented with Lactobacillus acidophilus KCTC3925 (FCC) and its anti-obesity effects in high-fat diet (HFD)-induced obese mice were determined. Five-week-old male ICR mice were fed a normal diet or HFD in the presence or absence of 3% and 5% FCC by weight (n = 10 per group). After 12 weeks, the mice were sacrificed, and the serum and tissue samples were collected for analysis. Body weight and epididymal fat pad weight were significantly lowered in the 3% and 5% FCC groups compared with those in the HFD control group (p < 0.01). FCC supplementation suppressed serum triglyceride and increased serum HDL-C levels (p < 0.01). Serum GOT, GPT, and leptin levels, hepatic COX-2 mRNA expression, and splenic COX-2 and IL-4 mRNA expression were significantly higher in the HFD groups than in the control group (p > 0.05); however, except for splenic IL-4 levels, the increases were significantly attenuated by FCC supplementation. Expression of ICAM-1, an aortic inflammatory marker, was significantly increased in the HFD group; this effect was suppressed in the 3% FCC group (p < 0.01) but not in the 5% FCC group. FCC suppressed the body weight and epididymal fat pad weight gain, as well as inflammatory responses in the liver and spleen of HFD-fed mice. Thus, FCC supplementation will be beneficial for the treatment of obesity-related effects.

Chemical changes in resazurin by probiotics and its application for evaluating living bacterial cell counts and their reduction potentials (프로바이오틱스에 의한 레자주린의 화학적 변화와 생균수 및 환원활성 측정에의 적용)

  • Lee, Hyowon;Oh, Yeong Ji;Hong, Jungil
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.2
    • /
    • pp.204-212
    • /
    • 2021
  • Resazurin, an oxidized blue dye, is reduced to resorufin, showing a peak absorbance change and emitting fluorescence due to the metabolic activity of living cells. In this study, the growth of Lactobacillus rhamnosus GG (LGG) and the redox potential of living probiotic bacteria were evaluated based on changes in the absorbance or fluorescence of resazurin. Fluorescence analysis is a more accurate and sensitive method for quantifying viable LGG than the colorimetric absorbance measurement of resazurin change. Fluorescence measurement could detect LGG of 6.5-9.5 log CFU/mL within 30 min with R2=0.99. No significant effect of further reduction of resorufin to dihydroresorufin by LGG was observed. Various probiotics showed different resazurin-reducing activities, and L. kimchicus had the highest reducing activity among the six probiotics tested. These findings suggests that fluorescence measurement in a resazurin-based assay is useful for analyzing bacterial growth and the redox potential of living probiotics.

Transcriptional regulation of chicken leukocyte cell-derived chemotaxin 2 in response to toll-like receptor 3 stimulation

  • Lee, Seokhyun;Lee, Ra Ham;Kim, Sung-Jo;Lee, Hak-Kyo;Na, Chong-Sam;Song, Ki-Duk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.12
    • /
    • pp.1942-1949
    • /
    • 2019
  • Objective: Leukocyte cell-derived chemotaxin 2 (LECT2) is associated with several physiological processes including inflammation, tumorigenesis, and natural killer T cell generation. Chicken LECT2 (chLECT2) gene was originally identified as one of the differentially expressed genes in chicken kidney tissue, where the chickens were fed with different calcium doses. In this study, the molecular characteristics and gene expression of chLECT2 were analyzed under the stimulation of toll-like receptor 3 (TLR3) ligand to understand the involvement of chLECT2 expression in chicken metabolic disorders. Methods: Amino acid sequence of LECT2 proteins from various species including fowl, fish, and mammal were retrieved from the Ensembl database and subjected to Insilco analyses. In addition, the time- and dose-dependent expression of chLECT2 was examined in DF-1 cells which were stimulated with polyinosinic:polycytidylic acid (poly [I:C]), a TLR3 ligand. Further, to explore the transcription factors required for the transcription of chLECT2, DF-1 cells were treated with poly (I:C) in the presence or absence of the nuclear factor ${\kappa}B$ ($NF{\kappa}B$) and activated protein 1 (AP-1) inhibitors. Results: The amino acid sequence prediction of chLECT2 protein revealed that along with duck LECT2 (duLECT2), it has unique signal peptide different from other vertebrate orthologs, and only chLECT2 and duLECT2 have an additional 157 and 161 amino acids on their carboxyl terminus, respectively. Phylogenetic analysis suggested that chLECT2 is evolved from a common ancestor along with the actinopterygii hence, more closely related than to the mammals. Our quantitative polymerase chain reaction results showed that, the expression of chLECT2 was up-regulated significantly in DF-1 cells under the stimulation of poly (I:C) (p<0.05). However, in the presence of $NF{\kappa}B$ or AP-1 inhibitors, the expression of chLECT2 is suppressed suggesting that both $NF{\kappa}B$ and AP-1 transcription factors are required for the induction of chLECT2 expression. Conclusion: The present results suggest that chLECT2 gene might be a target gene of TLR3 signaling. For the future, the expression pattern or molecular mechanism of chLECT2 under stimulation of other innate immune receptors shall be studied. The protein function of chLECT2 will be more clearly understood if further investigation about the mechanism of LECT2 in TLR pathways is conducted.

Analysis of vitamin E and K contents in sea algae and vegetables frequently consumed in Korea for National Standard Food Composition Database (국가표준식품성분표 개정을 위한 국내 다소비 해조류 및 채소류의 비타민 E 및 K 분석)

  • Kim, Hyo Jin;Lee, Seogyeong;Park, Jin Ju;Kim, Hyun Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.1
    • /
    • pp.19-28
    • /
    • 2021
  • Vitamin E and K are essential micronutrients required by our body in small amounts for proper metabolic functions; however, the content of vitamin E and K commonly consumed in foods has not been comprehensively defined. In this study, the contents of vitamins E and K in sea algae and vegetables were analyzed and the analytical methods were validated. The α-tocopherol equivalent (α-TE) and vitamin K1 content in sea algae ranged from 0.15 to 1.14 mg/100 g and from 11.91 to 1,629.5 ㎍/100 g, respectively. In addition, α-TE and vitamin K1 of vegetables were detected in the range of 0.02-2.48 mg/100 g and 16.15-979.60 ㎍/100 g, respectively. In particular, β- and γ-tocopherol and α- and β-tocotrienol were detected in several vegetables. The analytical methods were accurate and reproducible. These results provide reliable data on the vitamin E and K contents of foods consumed in Korea for the development of National Standard Food Composition Database.

Assessment of Rhizosphere Microbial Community Structure in Tomato Plants after Inoculation of Bacillus Species for Inducing Tolerance to Salinity (토마토에 염류 내성을 유도하는 바실러스 균주 처리 후 근권 미생물 군집 구조 연구)

  • Yoo, Sung-Je;Lee, Shin Ae;Weon, Hang-Yeon;Song, Jaekyeong;Sang, Mee Kyung
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.1
    • /
    • pp.49-59
    • /
    • 2021
  • BACKGROUND: Soil salinity causes reduction of crop productivity. Rhizosphere microbes have metabolic capabilities and ability to adaptation of plants to biotic and abiotic stresses. Plant growth-promoting bacteria (PGPB) could play a role as elicitors for inducing tolerance to stresses in plants by affecting resident microorganism in soil. This study was conducted to demonstrate the effect of selected strains on rhizosphere microbial community under salinity stress. METHODS AND RESULTS: The experiments were conducted in tomato plants in pots containing field soil. Bacterial suspension was inoculated into three-week-old tomato plants, one week after inoculation, and -1,000 kPa-balanced salinity stress was imposed. The physiological and biochemical attributes of plant under salt stress were monitored by evaluating pigment, malondialdehyde (MDA), proline, soil pH, electrical conductivity (EC) and ion concentrations. To demonstrate the effect of selected Bacillus strains on rhizosphere microbial community, soil microbial diversity and abundance were evaluated with Illumina MiSeq sequencing, and primer sets of 341F/805R and ITS3/ITS4 were used for bacterial and fungal communities, respectively. As a result, when the bacterial strains were inoculated and then salinity stress was imposed, the inoculation decreases the stress susceptibility including reduction in lipid peroxidation, enhanced pigmentation and proline accumulation which subsequently resulted in better plant growth. However, bacterial inoculations did not affect diversity (observed OTUs, ACE, Chao1 and Shannon) and structure (principle coordinate analysis) of microbial communities under salinity stress. Furthermore, relative abundance in microbial communities had no significant difference between bacterial treated- and untreated-soils under salinity stress. CONCLUSION: Inoculation of Bacillus strains could affect plant responses and soil pH of tomato plants under salinity stress, whereas microbial diversity and abundance had no significant difference by the bacterial treatments. These findings demonstrated that Bacillus strains could alleviate plant's salinity damages by regulating pigments, proline, and MDA contents without significant changes of microbial community in tomato plants, and can be used as effective biostimulators against salinity stress for sustainable agriculture.

The Prognosis of Glyphosate herbicide intoxicated patients according to their salt types (글라이포세이트 중독 환자에서 포함된 염의 종류에 따른 예후의 차이)

  • Jeong, Min Gyu;Keum, Kyoung Tak;Ahn, Seongjun;Kim, Yong Hwan;Lee, Jun Ho;Cho, Kwang Won;Hwang, Seong Youn;Lee, Dong Woo
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.19 no.2
    • /
    • pp.83-92
    • /
    • 2021
  • Purpose: Glyphosate herbicide (GH) is a widely used herbicide and has been associated with significant mortality as poisoned cases increases. One of the reasons for high toxicity is thought to be toxic effect of its ingredient with glyphosate. This study was designed to determine differences in the clinical course with the salt-type contained in GH. Methods: This was a retrospective study conducted at a single hospital between January 2013 and December 2017. We enrolled GH-poisoned patients visited the emergency department. According to salt-type, patients were divided into 4 groups: isopropylamine (IPA), ammonium (Am), potassium (Po), and mixed salts (Mi) groups. The demographics, laboratory variables, complications, and their mortality were analyzed to determine clinical differences associated with each salt-type. Addtionally, we subdivided patients into survivor and non-survivor groups for investigating predictive factors for the mortality. Results: Total of 348 GH-poisoned patients were divided as follows: IPA 248, Am 41, Po 10, and Mi 49 patients. There was no difference in demographic or underlying disease history, but systolic blood pressure (SBP) was low in Po group. The ratio of intentional ingestion was higher in Po and Mi groups. Metabolic acidosis and relatively high lactate level were presented in Po group. As the primary outcome, the mortality rates were as follows: IPA, 26 (10.5%); Am, 2 (4.9%); Po, 1 (10%); and Mi, 1 (2%). There was no statistically significant difference in the mortality and the incidence of complications. Additionally, age, low SBP, low pH, corrected QT (QTc) prolongation, and respiratory failure requiring mechanical ventilation were analyzed as independent predictors for mortality in a regression analysis. Conclusion: There was no statistical difference in their complications and the mortality across the GH-salt groups in this study.

Effect of feed restriction on the maintenance energy requirement of broiler breeders

  • da Silva Teofilo, Guilherme Ferreira;Lizana, Rony Riveros;de Souza Camargos, Rosiane;Leme, Bruno Balbino;Morillo, Freddy Alexander Horna;Silva, Raully Lucas;Fernandes, Joao Batista Kochenborger;Sakomura, Nilva Kazue
    • Animal Bioscience
    • /
    • v.35 no.5
    • /
    • pp.690-697
    • /
    • 2022
  • Objective: This study aimed to evaluate the effect of the ad libitum and restricted feeding regimen on fasting heat production (FHP) and body composition. Methods: Twelve Hubbard broilers breeders were selected with the same body weight and submitted in two feeding regimes: Restricted (T1) with feed intake of 150 g/bird/d and ad libitum (T2). The birds were randomly distributed on the treatments in two runs with three replications per treatment (per run). The birds were adapted to the feed regimens for ten days. After that, they were allocated in the open-circuit chambers and kept for three days for adaptation. On the last day, oxygen consumption (VO2) and carbon dioxide production (VCO2) were measured by 30 h under fasting. The respiratory quotient (RQ) was calculated as the VCO2/VO2 ratio, and the heat production (HP) was obtained using the Brower equation (1985). The FHP was estimated throughout the plateau of HP 12 hours after the feed deprivation. The body composition was analyzed by dual-energy X-ray absorptiometry scanning at the end of each period. Data were analyzed for one-way analysis of variance using the Minitab software. Results: The daily feed intake was 30 g higher to T2 (p<0.01) than the T1. Also, the birds of the T2 had significatively (p<0.05) more oxygen consumption (+3.1 L/kg0.75/d) and CO2 production (+2.2 L/kg0.75/d). That resulted in a higher FHP 359±14 kJ/kg0.75/d for T2 than T1 296±17.23 kJ/kg0.75/d. In contrast, the RQ was not different between treatments, with an average of 0.77 for the fasting condition. In addition, protein and fat composition were not affected by the treatment, while a tendency (p<0.1) was shown to higher bone mineral content on the T1. Conclusion: The birds under ad libitum feeding had a higher maintenance energy requirement but their body composition was not affected compared to restricted feeding.

Impact of Microbiota on Gastrointestinal Cancer and Anticancer Therapy (미생물 균총이 위장관암과 항암제에 미치는 영향)

  • Kim, Sa-Rang;Lee, Jung Min
    • Journal of Life Science
    • /
    • v.32 no.5
    • /
    • pp.391-410
    • /
    • 2022
  • Human microbiota is a community of microorganisms, including bacteria, fungi, and viruses, that inhabit various locations of the body, such as the gut, oral, and skin. Along with the development of metabolomic analysis and next-generation sequencing techniques for 16S ribosomal RNA, it has become possible to analyze the population for subtypes of microbiota, and with these techniques, it has been demonstrated that bacterial microbiota are involved in the metabolic and immunological processes of the hosts. While specific bacteria of microbiota, called commensal bacteria, positively affect hosts by producing essential nutrients and protecting hosts against other pathogenic microorganisms, dysbiosis, an abnormal microbiota composition, disrupts homeostasis and thereby has a detrimental effect on the development and progression of various types of diseases. Recently, several studies have reported that oral and gut bacteria of microbiota are involved in the carcinogenesis of gastrointestinal tumors and the therapeutic effects of anticancer therapy, such as radiation, chemotherapy, targeted therapy, and immunotherapy. Studying the complex relationships (bacterial microbiota-cancer-immunity) and microbiota-related carcinogenic mechanisms can provide important clues for understanding cancer and developing new cancer treatments. This review provides a summary of current studies focused on how bacterial microbiota affect gastrointestinal cancer and anticancer therapy and discusses compelling possibilities for using microbiota as a combinatorial therapy to improve the therapeutic effects of existing anticancer treatments.

The Effects of Resistance Exercise on Body Composition Physical Strength, Blood Lipids and Insulin in Elderly Women (저항성 운동이 여성 노인의 신체조성, 체력, 혈중지질 및 인슐린에 미치는 영향)

  • Kim, Won-Gyeong;Kim, Hyun-Jun
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.10 no.3
    • /
    • pp.85-94
    • /
    • 2022
  • Purpose : This study aimed to investigate the effects of 12 weeks of resistance exercise on body composition, physical strength, blood lipids, and insulin. Methods : The study was conducted on 24 elderly women divided into two groups: 12 subjects in an exercise group and 12 subjects in a control group. Resistance exercise was performed for 50 minutes a day, three times a week, for the duration of 12 weeks, and body composition, physical strength, blood lipids, and insulin were measured before and after the subjects completed the program. For the statistical analysis, the mean and standard deviation (M±SD) of each variable were calculated using SPSS version 20, and a paired t-test and two-way repeated ANOVA were conducted to test for the differences before and after the resistance exercise. All significant levels were set to α=.05 as a result of the experiment. Results : Changes in body composition after the 12-week resistance exercise program did not show any significant difference based on the comparison between the groups, but when noting the values for body fat percentage and body in the control group before and after, a significant difference was shown in fat mass (p<.05). As for changes in physical fitness, significant differences appeared in flexibility, muscle strength, and stenotic force (p<.01) when the groups were compared. Regarding pre- and post-values within each group concerning flexibility within the exercise group, significant differences were shown in gender (p<.001), muscle strength (p<.05), (p<.01), muscle earth strength, equilibrium (p<.01), stenosis force, and cardiopulmonary earth force (p<.001). Also, comparisons between populations in changes in blood lipids the values before and after in each group, significant differences in glucose (p<.05) and insulin (p<.05) were shown in the exercise group. When comparing the values before and after in each population, a significant difference was shown in the control group (p<.05). Conclusion : When all the results were integrated, the 12-week resistance exercise program was found to enhance physical strength (flexibility, muscle strength, and coordination) and improve the blood sugar levels of elderly women. In particular, resistance exercise is believed to lower the prevalence of obesity, type 2 diabetes mellitus, and metabolic diseases by having a positive effect on insulin. Further studies are suggested to verify the effect on body composition and blood lipids by setting up a variety of exercise treatment methods (including subjects, exercise periods, exercise plans, and exercise intensity focuses).

A Study on the Role of Public Sewage Treatment Facilities using Wastewater-based Epidemiology (하수기반역학을 적용한 공공하수처리시설 역할 재정립)

  • Park Yoonkyung;Yun Sang-Lean;Yoon Younghan;Kim Reeho;Nishimura Fumitake;Sturat L. Simpson;Kim Ilho
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.3
    • /
    • pp.231-239
    • /
    • 2023
  • Public sewage treatment facilities are a necessary infrastructure for public health that treat sewage generated in cities and basin living areas and discharge it into rivers or seas. Recently, the role of public sewage treatment is receiving attention as a place of use of wastewater-based epidemiology (WBE), which analyzes human specific metabolic emissions or biomarkers present in sewage to investigate the environment to which the population is exposed in the water drain. WBE is mainly applied to investigate legal and water-law drug use or to predict and analyze the lifestyle of local residents. WBE has also been applied to predict and analyze the degree of infectious diseases that are prevalent worldwide, such as COVID-19. Since sewage flowing into public sewage treatment facilities includes living information of the population living in the drainage area, it is easy to collect basic data to predict the confirmation and spread of infectious diseases. Therefore, it is necessary to establish a new role of public sewage treatment facilities as an infrastructure necessary for WBE that can obtain information on the confirmation and spread of infectious diseases other than the traditional role of public sewage treatment. In South Korea, the sewerage supply rate is about 95.5% and the number of public sewage treatment facility is 4,209. This means that the infrastructure of sewerage is fully established. However, to successfully drive for WBE , research on monitoring and big-data analysis is needed.