DOI QR코드

DOI QR Code

Chemical changes in resazurin by probiotics and its application for evaluating living bacterial cell counts and their reduction potentials

프로바이오틱스에 의한 레자주린의 화학적 변화와 생균수 및 환원활성 측정에의 적용

  • Lee, Hyowon (Division of Applied Food System, College of Natural Science, Seoul Women's University) ;
  • Oh, Yeong Ji (Department of Food and Animal Biotechnology, Center for Food and Bioconvergence, Seoul National University) ;
  • Hong, Jungil (Division of Applied Food System, College of Natural Science, Seoul Women's University)
  • 이효원 (서울여자대학교 자연과학대학 식품응용시스템학부) ;
  • 오영지 (서울대학교 식품바이오융합연구소) ;
  • 홍정일 (서울여자대학교 자연과학대학 식품응용시스템학부)
  • Received : 2021.01.12
  • Accepted : 2021.02.17
  • Published : 2021.04.30

Abstract

Resazurin, an oxidized blue dye, is reduced to resorufin, showing a peak absorbance change and emitting fluorescence due to the metabolic activity of living cells. In this study, the growth of Lactobacillus rhamnosus GG (LGG) and the redox potential of living probiotic bacteria were evaluated based on changes in the absorbance or fluorescence of resazurin. Fluorescence analysis is a more accurate and sensitive method for quantifying viable LGG than the colorimetric absorbance measurement of resazurin change. Fluorescence measurement could detect LGG of 6.5-9.5 log CFU/mL within 30 min with R2=0.99. No significant effect of further reduction of resorufin to dihydroresorufin by LGG was observed. Various probiotics showed different resazurin-reducing activities, and L. kimchicus had the highest reducing activity among the six probiotics tested. These findings suggests that fluorescence measurement in a resazurin-based assay is useful for analyzing bacterial growth and the redox potential of living probiotics.

본 연구에서는 살아있는 프로바이오틱스 균주에 의한 레자주린의 흡광 및 형광특성의 변화와 레소루핀과의 반응성을 분석하고, 균주별 레자주린에 대한 환원능을 비교하였다. LGG에 의해 레자주린은 흡광과 형광의 변화를 수반하며 레소루핀으로 환원되고 반응시간과 생균수의 증가에 따라 환원정도가 증가하였으며, 형광의 변화에서 더 정확하고 민감한 반응성을 보였다. 한편 LGG에 의한 레소루핀으로부터 다이하이드로레소루핀으로의 환원반응은 거의 유발되지 않았다. 프로바이오틱스 6개 균주 중 L. kimchicus의 생균에 의한 레자주린 환원력이 월등하게 높은 반면, 균체 파쇄 후의 ABTS 및 DPPH 라디칼 소거능은 다른 양상을 보이며 L. plantarum과 L. casei가 높은 활성을 나타냈다. 한편 생균의 MTT 환원능은 L. kimchicus가 LGG에 비해 현저히 높아 레자주린 환원능과 유사한 양상을 보였다. 본 연구결과는 레자주린이 단일 균주 프로바이오틱스의 생균수 측정에 유용하며, 프로바이오틱스의 선별 및 환원활성 측정에 활용될 수 있음을 시사한다.

Keywords

References

  1. Barnes S, Spenney JG. Stoichiometry of the NADH-oxidoreductase reaction for dehydrogenase determinations. Clin. Chim. Acta 107: 149-154 (1980) https://doi.org/10.1016/0009-8981(80)90442-8
  2. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200 (1958) https://doi.org/10.1038/1811199a0
  3. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 (1976) https://doi.org/10.1006/abio.1976.9999
  4. Brugger SD, Baumberger C, Jost M, Jenni W, Brugger U, Muhlemann K. Automated counting of bacterial colony forming units on agar plates. PloS One e33695 (2012) https://doi.org/10.1371/journal.pone.0033695
  5. Caplice E, Fitzgerald GF. Food fermentations: role of microorganisms in food production and preservation. Int. J. Food Microbiol. 50: 131-149 (1999) https://doi.org/10.1016/S0168-1605(99)00082-3
  6. Cohen Y. Bioremediation of oil by marine microbial mats. Int. Microbiol. 5: 189-193 (2002) https://doi.org/10.1007/s10123-002-0089-5
  7. Devi SM, Archer AC, Halami PM. Screening, characterization and in vitro evaluation of probiotic properties among lactic acid bacteria through comparative analysis. Probiotics Antimicro. 7: 181-192 (2015) https://doi.org/10.1007/s12602-015-9195-5
  8. Erb RE, Chlers MH. Resazurin reducing time as an indicator of bovine semen fertilizing capacity. J. Dairy Sci. 33: 853-864 (1950) https://doi.org/10.3168/jds.s0022-0302(50)91981-3
  9. Fleming A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Brit. J. Exp. Pathol. 10: 226-236 (1929)
  10. Glick BR. Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol. Adv. 21: 383-393 (2003) https://doi.org/10.1016/S0734-9750(03)00055-7
  11. Grela E, Kozlowska J, Grabowiecka A. Current methodology of MTT assay in bacteria-A review. Acta Histochem. 120: 303-311 (2018) https://doi.org/10.1016/j.acthis.2018.03.007
  12. Guerin TF, Mondido M, McClenn B, Peasley B. Application of resazurin for estimating abundance of contaminant-degrading microorganisms. Lett. Appl. Microbiol. 32: 340-345 (2001) https://doi.org/10.1046/j.1472-765X.2001.00916.x
  13. Jung DS, Kim SY, Oh YJ. Food microbial experiment for HACCP application. Gyomoonsa, Gyeonggi, Korea. pp. 47-48 (2019)
  14. Jung MY, Lee J, Park B, Hwang H, Sohn SO, Lee SH, Lee JH. Applicability of a colorimetric method for evaluation of lactic acid bacteria with probiotic properties. Food Microbiol. 64: 33-38 (2017) https://doi.org/10.1016/j.fm.2016.12.008
  15. Ladisch MR, Kohlmann KL. Recombinant human insulin. Biotechnol. Progr. 8: 469-478 (1992) https://doi.org/10.1021/bp00018a001
  16. Lin MY, Yen CL. Antioxidative ability of lactic acid bacteria. J. Agr. Food Chem. 47: 1460-1466 (1999) https://doi.org/10.1021/jf981149l
  17. Mannanov RN, Sattarova RK. Antibiotics produced by Bacillus bacteria. Chem. Nat. Compd. 27: 117-123 (2001) https://doi.org/10.1023/A:1012314516354
  18. Mariscal A, Lopez-Gigosos RM, Carnero-Varo M, Fernandez-Crehuet J. Fluorescent assay based on resazurin for detection of activity of disinfectants against bacterial biofilm. Appl. Microbiol. Biot. 82: 773-783 (2009) https://doi.org/10.1007/s00253-009-1879-x
  19. Min TG, Kang WS. Simple, quick and nondestructive method for Brassicaceae seed viability measurement with single seed base using resazurin. Hortic. Environ. Biote. 52: 240-245 (2011) https://doi.org/10.1007/s13580-011-0182-9
  20. O'brien J, Wilson I, Orton T, Pognan F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. 267: 5421-5426 (2000) https://doi.org/10.1046/j.1432-1327.2000.01606.x
  21. Patel RM, Denning PW. Therapeutic use of prebiotics, probiotics, and postbiotics to prevent necrotizing enterocolitis: what is the current evidence?. Clin. Perinatol. 40: 11-25 (2013) https://doi.org/10.1016/j.clp.2012.12.002
  22. Peeters E, Nelis HJ, Coenye T. Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J. Microbiol. Meth. 72: 157-165 (2008) https://doi.org/10.1016/j.mimet.2007.11.010
  23. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 26: 1231-1237 (1999) https://doi.org/10.1016/S0891-5849(98)00315-3
  24. Ros RP, Morgan S, Hill C. Preservation and fermentation: past, present and future. Int. J. Food Microbiol. 79: 3-16 (2002) https://doi.org/10.1016/S0168-1605(02)00174-5
  25. Sarker SD, Nahar L, Kumarasamy Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 42: 321-324 (2007) https://doi.org/10.1016/j.ymeth.2007.01.006
  26. Sobko T, Huang L, Midtvedt T, Norin E, Gustafsson LE, Norman M, Lundberg JO. Generation of NO by probiotic bacteria in the gastrointestinal tract. Free Radical Bio. Med. 41: 985-991 (2006) https://doi.org/10.1016/j.freeradbiomed.2006.06.020
  27. Speck ML. Enumeration of vjable Lactobacillus acidophilus organisms in dairy products. J. Food Protect. 42: 135-137 (1978) https://doi.org/10.4315/0362-028x-42.2.135
  28. Vega-Avila E, Pugsley MK. An overview of colorimetric assay methods used to assess survival or proliferation of mammalian cells. P. W. Pharmacol. Soc. 54: 10-14 (2011)
  29. Wang Y, Wu Y, Wang Y, Xu H, Mei X, Yu D, Li W. Antioxidant properties of probiotic bacteria. Nutrients 9: 521 (2017) https://doi.org/10.3390/nu9050521
  30. Wijtzes T, Van't Riet K, in't Veld JH, Zwietering MH. A decision support system for the prediction of microbial food safety and food quality. Int. J. Food Microbiol. 42: 79-90 (1998) https://doi.org/10.1016/S0168-1605(98)00068-3