• Title/Summary/Keyword: Metabolic Activities

Search Result 541, Processing Time 0.035 seconds

Effects of the Prunus persica Batsch var. davidiana Max. Extract on the Lipid Compositions and Enzyme Activities in Hyperlipidemic Rats (돌복숭아(Prunus persica Batsch var. davidiana Max.) 추출액이 고지혈증 흰쥐의 생체 내 지질성분 및 효소활성에 미치는 영향)

  • Kim Han-Soo
    • The Korean Journal of Food And Nutrition
    • /
    • v.17 no.3
    • /
    • pp.328-336
    • /
    • 2004
  • The purpose of this study was designed to observe the effects of the feeding Prunus persica Batsch var. davidiana Max. extract on the concentrations of the lipids and blood glucose in the S.D. rats fed the experimental diets for 5 weeks. Concentrations of total cholesterol, atherosclerotic index, LDL, LDL-cholesterol, free-cholesterol, cholesteryl ester, triglyceride(TG), phospholipid(PL) and blood glucose in serum were significantly higher in the cholesterol administration groups (groups BCG (cholesterol+water), BCPG (cholesterol+ Prunus persica 5.0 g% extract) than those in the control group (group BG, basal diet+water). But the concentrations of total cholesterol, atherosclerotic index, LDL, LDL-cholesterol, free-cholesterol, cholesteryl ester, TG, PL and blood glucose in serum were remarkably lower in the group BCPG than those in the group BCG. In the ratio of HDL-cholesterol concentration to total cholesterol and HDL-cholesterol concentration, Prunus persica 5.0 g% extract administration group was higher percentage than in the group BCG. The activities of aspartate aminotransferase (AST), alanine aminotransferase(ALT), lactate dehydrogenase(LDH) and alkaline phosphatase (ALP) in serum were rather lower in the Prunus persica 5.0 g% extract administration group(group BCPG) than in the cholesterol diet group(group BCG). From the above research, Prunus persica Batsch var. davidiana Max. were effective on the improvement of the blood glucose, lipid compositions in serum of dietary hyperlipidemic rats. And particularly, Prunus persica Batsch var. davidiana Max. was more effective therapeutic regimen for the control of metabolic derangements in adult disease.

Metabolic engineering of Vit C: Biofortification of potato

  • Upadhyaya, Chandrama P.;Park, Se-Won
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2010.10a
    • /
    • pp.14-14
    • /
    • 2010
  • Vitamin C (ascorbic acid) is an essential component for collagen biosynthesis and also for the proper functioning of the cardiovascular system in humans. Unlike most of the animals, humans lack the ability to synthesize ascorbic acid on their own due to a mutation in the gene encoding the last enzyme of ascorbate biosynthesis. As a result, vitamin C must be obtained from dietary sources like plants. In this study, we have developed two different kinds of transgenic potato plants (Solanumtuberosum L. cv. Taedong Valley) overexpressing strawberry GalUR and mouse GLoase gene under the control of CaMV 35S promoter with increased ascorbic acid levels. Integration of the these genes in the plant genome was confirmed by PCR and Southern blotting. Ascorbic acid(AsA) levels in transgenic tubers were determined by high-performance liquid chromatography(HPLC). The over-expression of these genes resulted in 2-4 folds increase in AsA intransgenic potato and the levels of AsA were positively correlated with increased geneactivity. The transgenic lines with enhanced vitamin C content showed enhanced tolerance to abiotic stresses induced by methyl viologen(MV), NaCl or mannitol as compared to untransformed control plants. The leaf disc senescence assay showed better tolerance in transgenic lines by retaining higher chlorophyll as compared to the untransformed control plants. Present study demonstrated that the over-expression of these gene enhanced the level of AsA in potato tubers and these transgenics performed better under different abiotic stresses as compared to untransformed control. We have also investigated the mechanism of the abiotic stress tolerance upon enhancing the level of the ascorbate in transgenic potato. The transgenic potato plants overexpressing GalUR gene with enhanced accumulation of ascorbate were investigated to analyze the antioxidants activity of enzymes involved in the ascorbate-glutathione cycle and their tolerance mechanism against different abiotic stresses under invitro conditions. Transformed potato tubers subjected to various abiotic stresses induced by methyl viologen, sodium chloride and zinc chloride showed significant increase in the activities of superoxide dismutase(SOD, EC 1.15.1.1), catalase, enzymes of ascorbate-glutathione cycle enzymes such as ascorbate peroxidase(APX, EC 1.11.1.11), dehydroascorbate reductase(DHAR, EC 1.8.5.1), and glutathione reductase(GR, EC 1.8.1.7) as well as the levels of ascorbate, GSH and proline when compared to the untransformed tubers. The increased enzyme activities correlated with their mRNA transcript accumulation in the stressed transgenic tubers. Pronounced differences in redox status were also observed in stressed transgenic potato tubers that showed more tolerance to abiotic stresses when compared to untransformed tubers. From the present study, it is evident that improved to lerance against abiotic stresses in transgenic tubers is due to the increased activity of enzymes involved in the antioxidant system together with enhanced ascorbate accumulated in transformed tubers when compared to untransformed tubers. At moment we also investigating the role of enhanced reduced glutathione level for the maintenance of the methylglyoxal level as it is evident that methylglyoxal is a potent cytotoxic compound produced under the abiotic stress and the maintenance of the methylglyoxal level is important to survive the plant under stress conditions.

  • PDF

Bioconversion of Ginsenoside Rb1 to the Pharmaceutical Ginsenoside Compound K using Aspergillus usamii KCTC 6954 (Aspergillus usamii KCTC 6954에 의한 ginsenoside Rb1로 부터 의약용 소재인 compound K로의 생물학적 전환)

  • Jo, Mi Na;Jung, Ji En;Yoon, Hyun Joo;Chang, Kyung Hoon;Jee, Hee Sook;Kim, Kee-Tae;Paik, Hyun-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.4
    • /
    • pp.347-353
    • /
    • 2014
  • ${\beta}$-Glucosidase from Aspergillus usamii KCTC 6954 was used to convert ginsenoside Rb1 to compound K, which has a high bio-functional activity. The enzymatic activities during culturing for 15 days were determined using ${\rho}$-nitrophenyl-${\beta}$-glucopyranoside. The growth rate of the strain and the enzymatic activity were maximized after 6 days (IU; $175.93{\mu}M\;ml^{-1}\;min^{-1}$). The activities were maximized at $60^{\circ}C$ in pH 6.0. During culturing, Rb1 was converted to Rd after 9 d and then finally converted to compound K at 15 d. In the enzymatic reaction, Rb1 was converted to the ginsenoside Rd within 1 h of reaction time and compound K could be detected after 8 h. As a result, this study demonstrates that $Rb1{\rightarrow}Rd{\rightarrow}F2{\rightarrow}$compound K is the main metabolic pathway catalyzed by ${\beta}$-glucosidase and that ${\beta}$-glucosidase is a feasible option for the development of specific bioconversion processes to obtain minor ginsenosides such as Rd and compound K.

Protective Effect of Dietary Buchu (Allium tuberosum Rottler) on Oxidative Stress and Lipofuscin Formation in Streptozotocin-Induced Diabetic Rats (Streptozotocin-유발 당뇨쥐에서 부추식이의 산화적 스트레스 및 Lipofuscin 생성 억제 효과)

  • 이점옥;류승희;이유순;김정인;문갑순
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.8
    • /
    • pp.1337-1343
    • /
    • 2003
  • Diabetes mellitus has been known to be a state of increased oxidative stress. Free radical formation and lipid peroxidation are accelerated in this metabolic disorder. Buchu (Allium tuberosum Rottler) contains lots of antioxidative nutrients such as chlorophyll, vitamin C, $\beta$-carotene, phenolic compounds and sulfur compounds. To investigate the protective effects of buchu, 10% lyophilized buchu diet was fed to streptozotocin (STZ)-induced diabetic rats for 14 weeks and lipid peroxidation, protein oxidation, contents of reactive oxygen species, activities of antioxidative enzymes and contents of accumulated lipofuscin were measured as indicators of oxidative stress. Hepatic MDA and carbonyl contents tended to decrease in 10% buchu diet group compared with control group. Dietary buchu significantly suppressed lipid and protein oxidation in the skin of rats (p<0.05). Contents of hepatic hydroxyl radicals, which exert the highest toxicity among the reactive oxygen species, were significantly decreased in rats fed 10% buchu diet (P<0.05). Activities of antioxidative enzyme, such as superoxide dismutase, catalase, and glutathione peroxidase, tended to increase in liver and skin of rats fed 10% buchu diet, while hepatic catalase activity was significantly increased in buchu group compared with control group. Buchu supplementation significantly inhibited the accumulation of lipofuscin, an end-product of lipid peroxidation reactions induced by reactive oxygen radicals, in eye tissues compared with control diet (p<0.001). In conclusion, buchu supplementation diminished the oxidative stress, so dietary buchu could help to attenuate diabetes complications.

The Effect of Fungicide Carbendazim on Hepatic detoxication systems of rat (살균제 carbendazim이 랫드 간 해독체계에 미치는 영향)

  • Lee, Je-Bong;Shin, Jin-Sup;Jeong, Mi-Hye;Park, Yeon-Ki;Kang, Kyu-Young
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.4
    • /
    • pp.338-346
    • /
    • 2005
  • Serum alanine aminotransferase(ALT), aspartate aminotransferase (AST), hepatic glutathione, glutathione S-transferase(GST), cytochrome P450 and cytochrome P450 reductase activity were measured to investigate the effects of hepatic detoxication system and metabolic activities of carbendazim in Sprague Dawley(S.D.) male rat at dose levels of 375, 750 or 1,500 mg/kg body weight. Serum alanine aminotransferase(ALT) and aspartate aminotransferase(AST) activities were slightly increased in all test groups after 120 minutes of administration. Glutathione was increased about 20% at high and medium dose level within 120 minutes after administration, while activity of glutathione S-transferase was decreased $36{\sim}50%$. However, the enzyme activity was recovered from all test groups after 240 minutes of administration. Cytochrome P450 and activity of cytochrome P450 reductase were decreased $25{\sim}50%$ until 120 minutes after administration, but recovered after 240 minutes.

Antioxidant activities of black soldier fly, Hermetia illucens (아메리카동애등에(Hermetia illucens) 추출물의 항산화 활성)

  • Park, Kwanho;Choi, Jiyoung;Nam, Sunghee;Kim, Sunghyun;Kwak, Kyuwon;Lee, Seokhyun;Nho, Sikab
    • Journal of Sericultural and Entomological Science
    • /
    • v.52 no.2
    • /
    • pp.142-146
    • /
    • 2014
  • The purpose of this study was to determine the possibility of black soldier fly (Hermetia illucens) as a animal feedstuff. Insect resources have been widely recognized that it exhibits its own biological activity by whole body or its metabolic intermediates. To accomplish this, its general and biological activities were measured. The present study was conducted to compare antioxidant activity of black soldier fly larva, pupa and grasshopper by examining radical scavenging activity using DPPH (2,2 diphenyl 1-picryl hydrazyl). DPPH radical scavenging activity was conducted on the EtOH, MeOH, H2O fractions of black soldier fly larvae. Results showed that black soldier fly pupa on the H2O fraction contained the highest DPPH radical scavenging activity among the samples. FRAP assay are more suitable methods to evaluate antioxidant activity of black soldier fly extracts. Among the samples, the FRAP value showed higher antioxidant activity in the extracts from black soldier fly pupa extract on H2O fraction. These results suggest that black soldier fly larva and pupa extract has antioxidant activity and its fractions can be utilized to develop functional feedstuff.

A Study on Homeostasis in Albino Rats by Feeding on Imbalanced Protein Diet (불균형식이(不均衡食餌)에 의(依)한 백서체내(白鼠體內) Homeostasis에 대(對)한 연구(硏究))

  • Ryu, Tcheong-Kun
    • Journal of Nutrition and Health
    • /
    • v.7 no.2
    • /
    • pp.37-51
    • /
    • 1974
  • This Study was carried out to observe the effect of nutritional condition on the change of protein metabolism in the animal body by feeding on imbalanced protein diet. A total 242 growing male albino rats, weighing $115{\sim}120$ gm, were used for the experimental animals. The rats were fed on the standard diet(st), protein flee diet(pf) and imbalanced protein diet(ib) for twelve weeks respectively. Hemoglobin, packed cell volume in blood, and total nitrogen, amino acid nitrogen, urea-nitrogen, creatinine, transaminases(GPT, GOT) in liver and serum, and total nitrogen in small intestine, and total nitrogen, urea-nitrogen In small intestine, and total nitrogen, urea-nitrogen, creatinine, urea-nitrogen/creatinine ratio in urine were measured. The results obtained are as follows; 1. The gained body weight were lower in pf group and ib group than those of st group. The gained body weight fed for 12 weeks, were 80% lower in pf group than those of st group, and the body weight of pf group for $50{\sim}75$ days feeding were $40{\sim}60%$ decreased, compared with the stating weight, and then all of them died. 2. The change of the brain, liver, kidney, spleen and small intestine by feeding on imbalanced diet for 12 weeks were no remarkable difference with the starting weight, but those of protein free diet group were half or more decrease and those were significantly lower in spleen and small intestine especially than the other organ 3. The contents of hemoglobin in pf group for 8 weeks feeding, and the packed cell volume in pf group for 8 weeks feeding and in ib group for 12 weeks feeding were decreased. but those of the other feeding group were almost same value. 4. The total nitrogen in the liver, small intestine and serum of each diet group were no remarkable difference respectively. The contents of amino acid nitrogen in pf group for 2 and 6 weeks feeding were increased. 5. On transaminases: a) The cycle of increase and decrease of GPT activities were come periodically and the interval of cycle were fast in the early stage of feeding and slow there-after. b) The GPT activities were decreased gradually in pf group after feeding and those were increased in ib group for 6 weeks feeding but decreased there-after. The frequency of cycle were more GPT than GOT and specially those of GPT in early stage of feeding were two or three times while GOT was one. c) The interval of increase and decrease in GOT and amino acid nitrogen cycle were similar tendency. 6. The contents of total nitrogen, creatinine and urea-nitrogen of pf group in urine were decreased very sharply from sharting feeding to one week but increased dully from six weeks to eight weeks feeding. The contents of urea-nitrogen of ib group were increased dully by feeding on ten weeks but decreased by feeding on twelve weeks. From the above results, it is concluded that the trend of the metabolic change is maintained equally by homeostatic mechanism using the endogenous protein source during a certain period by imbalanced protein diet feeding. The homeostatic mechanism is come peridically, very fast in early stage of feeing and than slow there-after.

  • PDF

Physico-chemical Properties and Antibacterial Activities of Lactonic Sophorolipid (락톤형 소포로리피드의 물리화학적 특성 및 항균효과)

  • Cho, Soo A;Eom, Gyeong Tae;Jin, Byung Suk
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.303-307
    • /
    • 2019
  • Sophorolipid is a biological surfactant of the glycolipid structure produced by Candida bombicola, which generally exists as a mixture of acidic and lactonic forms. In this study, we investigated physico-chemical properties, antibacterial activities, and cytotoxicity of the sophorolipid containing more than 96% of the lactonic form, produced by the gene regulation of production strains and application of a metabolic engineering technique. The lactonic sophorolipid showed a weak acidity in the range of pH 3.2~4.6 when diluted in water at the concentrations from 1 to 0.001 wt%. The $pK_a$ value of the lactonic sophorolipid was estimated to be around 4.3 from the acid-base titration curve. The critical micelle concentration (CMC) of the lactonic sophorolipid was $10^{-2}wt%$, at which the surface tension of aqueous solution was reduced to 36 mN/m. The lactonic sophorolipid showed the minimum inhibitory concentrations (MIC) of $1{\times}10^{-3}$ and $5{\times}10^{-3}g/mL$ against Propionibacterium acnes and Corynebacterium xerosis, respectively. The MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] assay showed that cytotoxicity of the lactonic sophorolipid was ten times lower than that of triclosan.

Enhancement of Photosynthetic Characteristics and Antioxidant Enzyme Activities on Chili Pepper Plants by Salicylic Acid Foliar Application under High Temperature and Drought Stress Conditions (고온 및 건조 스트레스 조건 하에서 살리실산 경엽처리에 의한 고추의 광합성 특성 및 항산화효소 활성 증대)

  • Lee, Jinhyoung;Lee, Heeju;Wi, Seunghwan;Lee, Hyejin;Choi, Haksoon;Nam, Chunwoo;Jang, Seonghoe
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.311-318
    • /
    • 2022
  • Salicylic acid (SA), a phenolic compound, plays a pivotal role in regulating a wide range of physiological and metabolic processes in plants such as antioxidant cellular defense, photosynthesis, and biotic and abiotic stress responses during the growth and development. We examined the effect of exogenous SA application (100 mg·L-1) on the growth, yield, photosynthetic characteristics, lipid peroxidation, and antioxidant enzyme activity of chili pepper plants under high temperature and drought stress conditions. SA treatment induced increases of net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr) under the stress condition with the highest level after the third treatment. The contents of malondialdehyde and H2O2 were significantly lower in the third treatment of SA compared to the control. The activity of ascorbate peroxidase, catalase, peroxidase and superoxide dismutase, increased in treated plants by up to 247, 318, 55 and 54%, respectively compared to the nontreated control. There was no significant difference in the growth characteristics between SA-treated and nontreated plants, while the SA treatment increased marketable yield (kg/10a) by about 15% compared to the nontreated control. Taken together, these results suggest that foliar application of SA alleviates physiological damages caused by the combination of drought and heat stress, and enhances the photosynthetic capacity and antioxidant enzyme activities, thereby improving tolerance to a combination of water deficit and heat stress in chili pepper plants.

Determination of Antioxidant Activities and Bioactive Compounds from Rosa rugosa Extract (해당화 추출물의 주요물질 분석에 따른 폴리페놀 함량 및 항산화 활성 탐색)

  • Jun Hee, Kim;Youn Sun, Hwang;Jae Hoon, Park;Min Ho, Kang;Ye Sol, Oh;Jin Woo, Kim
    • Journal of Life Science
    • /
    • v.32 no.11
    • /
    • pp.841-846
    • /
    • 2022
  • The purpose of this study was to evaluate the antioxidant properties of Rosa rugosa extract and to identify which of its components are responsible for these properties. Reactive oxygen species play an important role in diseases such as cancer, arteriosclerosis, and heart disease as a consequence of increased metabolic rates, gene mutations, and relative hypoxia. Therefore, the antioxidant effect of R. rugosa extract was confirmed by HPLC, HPLC-MS/MS, the total polyphenol content, the total flavonoid content, and the radical scavenging activity. HPLC and HPLC-MS/MS analyses were conducted to identify and quantify the main components of the R. rugosa extract. Gallic acid and epigallocatechin gallate were identified as the main components, with 17.4 and 4.35 mg/g dry matter (DM), respectively. The antioxidant activity of R. rugosa extract was evaluated based on its total polyphenol content, total flavonoid content, and radical scavenging activity, which were 72.3 mg gallic acid equivalent/g DM, 11.2 mg quercetin equivalent/g DM, and 87.9%, respectively. The radical scavenging activities of the main components, gallic acid and epigallocatechin gallate, were 80.5% and 89.7%, respectively. Therefore, R. rugosa has a high polyphenol content and antioxidant activity, and it can be used as a natural antioxidant in food, cosmetics, and pharmaceuticals.