• Title/Summary/Keyword: Meta-heuristic method

Search Result 111, Processing Time 0.024 seconds

A Study on the Restoration System for Distribution Networks Using Dynamic Division Method (동적분할 기법을 이용한 배전망의 정전복구 시스템에 관한 연구)

  • 임찬호
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.3
    • /
    • pp.64-72
    • /
    • 2003
  • Comparing with transmission networks, the faults in distribution networks more often occurs because of the complicated structure and the adjacency to customers. Moreover the faults give direct damage to customers. So fault diagnosis and blackout restoration in distribution networks are very important elements to reduce the damage of customers and to maintain the stability. The restoration problem of distribution networks is subject to time. Minimizing the switching numbers in restoration process is the crucial element. In other words. the best restoration is to restore all blackout area through just one switching, if not the restoration has to be accomplished through several switching. This paper proposes the efficient restoration system in distribution networks to minimize the switching numbers. The proposed system uses the dynamic division method of hierarchical structure which consists of heuristic searching method and meta algorithm. The proposed system is applied to the sample networks, and the results showed a promising possibility.

Comparison of Three Parameter Estimation Methods for Mixture Distributions (혼합분포모형의 매개변수 추정방법 비교)

  • Shin, Ju-Young;Kim, Sooyoung;Kim, Taereem;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.45-45
    • /
    • 2017
  • 상이한 자연현상으로 발생된 자료들은 때때로 통계적으로 다른 특성을 가지는 경우가 있다. 이런 자료들은 다른 두 개 이상의 모집단에서 자료가 발생한 것으로 가정할 수 가 있다. 기존에 널리 사용되어온 분포형 모형의 경우 단일한 모집단으로부터 자료가 발생한다는 가정하에서 개발된 모형들로 위에서 언급한 자료들을 적절히 모의할 수 없다. 이런 상이한 모집단에서 발생된 자료를 모형화 하기 위해서 혼합분포모형(mixture distribution)이 개발되었다. 홍수나 가뭄 등과 같은 극치 사상의 경우 다양한 자연현상들로부터 발생하기에 혼합분포모형을 적용할 경우 보다 정확한 모의가 가능하다. 혼합분포모형은 두 개 이상의 비혼합분포모형들을 가중합하여 만들어진다. 혼합 분포모형의 형태로 인하여 기존의 분포형 모형의 매개변수 추정 모형으로 널리 사용되던 최우도법 (maximum likelihood method), 모멘트법(method of moment), 확률가중모멘트법 (probability weighted moment method) 등을 이용하여 혼합분포모형의 매개변수를 추정하는 것이 용이 하지 않다. 혼합분포모형의 매개변수 추정 방법으로는 Expectation-Maximization (EM) 알고리즘, Meta-Heuristic Maximum Likelihood (MHML) 방법, Markov Chain Monte Carlo (MCMC) 방법 등이 적용되고 있다. 현재까지 수자원 분야에서 사용되는 극치 자료를 혼합분포모형을 이용하여 모의할 때 매개변수 추정방법에 따른 특성에 대한 연구가 진행되지 않았다. 본 연구에서는 우리나라 연최대강우량 자료를 이용하여 혼합분포모형의 매개변수 추정방법 (EM 알고리즘, MHML 방법, MCMC 방법) 들의 특성들을 비교 분석하였다. 혼합분포모형으로는 Gumbel-Gumbel 혼합분포 모형을 적용하였다. 본 연구의 결과는 향후 혼합분포모형을 이용한 연구에 좋은 기초자료로 사용될 수 있을 것으로 판단된다.

  • PDF

Adaptive Process Decision-Making with Simulation and Regression Models (시뮬레이션과 회귀분석을 연계한 적응형 공정의사결정방법)

  • Lee, Byung-Hoon;Yoon, Sung-Wook;Jeong, Suk-Jae
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.4
    • /
    • pp.203-210
    • /
    • 2014
  • This study proposes adaptive decision making method having feed-back structure of regression and simulation models to support the quick decision making of production managers by managing and integrating the mutual relationship among historical data. For that, from historical data that have extracted and accumulated from each process, we first selected major constraint resources that are used as independent variables in regression model. The regression model is designed by using the dependent variables (objectives) that defined above by managers and independent variables selected in previous step and simulation model that are composed of constraint resources is designed. In process of simulation run, we obtain the multiple feasible solutions (alternatives) by using meta-heuristic method. Each solution is substituted by regression equation and we found the optimal solution that is minimum of difference between values obtained by regression model and simulation results. The optimal solution is delivered and incorporated to production site and current operation results from production site is used to generate new regression model after that time.

Elite Ant System for Solving Multicast Routing Problem (멀티캐스트 라우팅 문제 해결을 위한 엘리트 개미 시스템)

  • Lee, Seung-Gwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.3
    • /
    • pp.147-152
    • /
    • 2008
  • Ant System(AS) is new meta heuristic for hard combinatorial optimization problem. It is a population based approach that uses exploitation of positive feedback as well as greedy search. It was first proposed for tackling the well known Traveling Salesman Problem. In this paper, AS is applied to the Multicast Routing Problem. Multicast Routing is modeled as the NP-complete Steiner tree problem. This is the shortest path from source node to all destination nodes. We proposed new AS to resolve this problem. The proposed method selects the neighborhood node to consider all costs of the edge and the next node in state transition rule. Also, The edges which are selected elite agents are updated to additional pheromone. Simulation results of our proposed method show fast convergence and give lower total cost than original AS and $AS_{elite}$.

  • PDF

Optimization Algorithm for Minimizing Network Energy Consumption with Traffic Redundancy Elimination (트래픽 중복 제거로 네트워크 에너지 소비를 최소화하기 위한 최적화 알고리즘)

  • Jang, Kil-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.7
    • /
    • pp.930-939
    • /
    • 2021
  • In recent years, the use of broadband bandwidth and redundant links for stable transmission in networks has resulted in excessive energy consumption and reduced transmission efficiency. In this paper, we propose an optimization algorithm that reduces the number of transmission links and minimizes transmission energy by removing redundant traffic in networks where traffic redundancy is allowed. The optimization algorithm proposed in this paper uses the meta-heuristic method using Tabu search algorithm. The proposed optimization algorithm minimizes transmission energy by designing a neighborhood generation method that efficiently routes overlapping traffic. The performance evaluation of the proposed optimization algorithm was performed in terms of the number of links used to transmit all traffic generated in the network and the transmission energy consumed. From the performance evaluation results, it was confirmed that the proposed algorithm is superior to other algorithms previously proposed.

Optimal Design of a Hybrid Structural Control System using a Self-Adaptive Harmony Search Algorithm (자가적응 화음탐색 알고리즘을 이용한 복합형 최적 구조제어 시스템 설계)

  • Park, Wonsuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.301-308
    • /
    • 2018
  • This paper presents an optimal design method of a hybrid structural control system considering multi-hazard. Unlike a typical structural control system in which one system is designed for one specific type of hazard, a simultaneous optimal design method for both active and passive control systems is proposed for the mitigation of seismic and wind induced vibration responses of structures. As a numerical example, an optimal design problem is illustrated for a hybrid mass damper(HMD) and 30 viscous dampers which are installed on a 30 story building structure. In order to solve the optimization problem, a self-adaptive Harmony Search(HS) algorithm is adopted. Harmony Search algorithm is one of the meta-heuristic evolutionary methods for the global optimization, which mimics the human player's tuning process of musical instruments. A self-adaptive, dynamic parameter adjustment algorithm is also utilized for the purpose of broad search and fast convergence. The optimization results shows that the performance and effectiveness of the proposed system is superior with respect to a reference hybrid system in which the active and passive systems are independently optimized.

Optimization Algorithm for Energy-aware Routing in Networks with Bundled Links (번들 링크를 가진 네트워크에서 에너지 인식 라우팅을 위한 최적화 알고리즘)

  • Jang, Kil-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.4
    • /
    • pp.572-580
    • /
    • 2021
  • In order to reduce transmission delay and increase reliability in networks, mainly high-performance and high-power network equipment is used to guarantee network quality. In this paper, we propose an optimization algorithm to minimize the energy consumed when transmitting traffic in networks with a bundle link composed of multiple physical cables. The proposed optimization algorithm is a meta-heuristic method, which uses tabu search algorithm. In addition, it is designed to minimize transmission energy by minimizing the cables on the paths of the source and destination nodes for each traffic. In the proposed optimization algorithm, performance evaluation was performed in terms of the number of cables used in the transmission and the link utilization for all traffic on networks, and the performance evaluation result confirmed the superior performance than the previously proposed method.

Optimization Algorithm for k-opt Swap of Generalized Assignment Problem (일반화된 배정 문제의 k-opt 교환 최적화 알고리즘)

  • Sang-Un Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.5
    • /
    • pp.151-158
    • /
    • 2023
  • The researchers entirely focused on meta-heuristic method for generalized assignment problem(GAP) that is known as NP-hard problem because of the optimal solution within polynomial time algorithm is unknown yet. On the other hand, this paper proposes a heuristic greedy algorithm with rules for finding solutions. Firstly, this paper reduces the weight matrix of original data to wij ≤ bi/l in order to n jobs(items) pack m machines(bins) with l = n/m. The maximum profit of each job was assigned to the machine for the reduced data. Secondly, the allocation was adjusted so that the sum of the weights assigned to each machine did not exceed the machine capacity. Finally, the k-opt swap optimization was performed to maximize the profit. The proposed algorithm is applied to 50 benchmarking data, and the best known solution for about 1/3 data is to solve the problem. The remaining 2/3 data showed comparable results to metaheuristic techniques. Therefore, the proposed algorithm shows the possibility that rules for finding solutions in polynomial time exist for GAP. Experiments demonstrate that it can be a P-problem from an NP-hard.

A Study on Optimal Operation Method of Multiple Microgrid System Considering Line Flow Limits (선로제약을 고려한 복수개의 마이크로그리드 최적운영 기법에 관한 연구)

  • Park, Si-Na;An, Jeong-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.258-264
    • /
    • 2018
  • This paper presents application of a differential search (DS) meta-heuristic optimization algorithm for optimal operation of a micro grid system. The DS algorithm simulates the Brownian-like random-walk movement used by an organism to migrate. The micro grid system consists of a wind turbine, a diesel generator, a fuel cell, and a photovoltaic system. The wind turbine generator is modeled by considering the characteristics of variable output. Optimization is aimed at minimizing the cost function of the system, including fuel costs and maximizing fuel efficiency to generate electric power. The simulation was applied to a micro grid system only. This study applies the DS algorithm with excellence and efficiency in terms of coding simplicity, fast convergence speed, and accuracy in the optimal operation of micro grids based on renewable energy resources, and we compared its optimum value to other algorithms to prove its superiority.

A Tabu Search Algorithm for Controller Placement Problem in Software Defined Networks (소프트웨어 정의 네트워크에서 제어기 배치 문제를 위한 타부 서치 알고리즘)

  • Jang, Kil-woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.491-498
    • /
    • 2016
  • The software defined networks implement a software network control plane, which is physically separated from the data plane. For wide area software defined network deployments, multiple controllers are required, and the placement of these controllers influences importantly the performance of the software defined networks. This paper proposes a Tabu search algorithm, which is one of the meta heuristic algorithms, for an efficient controller placement in software defined networks. In order to efficiently obtain better results, we propose new neighborhood generating operations, which are called the neighbor position move and the neighbor number move, of the Tabu search algorithm. We evaluate the performances of the proposed algorithm through some experiments in terms of the minimum latency and the execution time of the proposed algorithm. The comparison results show that the proposed algorithm outperforms the existing genetic algorithm and random method under various conditions.