• 제목/요약/키워드: Meta-heuristic algorithms

검색결과 96건 처리시간 0.029초

Simplified dolphin echolocation algorithm for optimum design of frame

  • Kaveh, Ali;Vaez, Seyed Rohollah Hoseini;Hosseini, Pedram
    • Smart Structures and Systems
    • /
    • 제21권3호
    • /
    • pp.321-333
    • /
    • 2018
  • Simplified Dolphin Echolocation (SDE) algorithm is a recently developed meta-heuristic algorithm. This algorithm is an improved and simplified version of the Dolphin Echolocation Optimization (DEO) method, based on the baiting behavior of the dolphins. The main advantage of the SDE algorithm is that it needs no empirical parameter. In this paper, the SDE algorithm is applied for optimization of three well-studied frame structures. The designs are then compared with those of other meta-heuristic methods from the literature. Numerical results show the efficiency of the SDE algorithm and its competitive ability with other well-established meta-heuristics methods.

Gamma ray interactions based optimization algorithm: Application in radioisotope identification

  • Ghalehasadi, Aydin;Ashrafi, Saleh;Alizadeh, Davood;Meric, Niyazi
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3772-3783
    • /
    • 2021
  • This work proposes a new efficient meta-heuristic optimization algorithm called Gamma Ray Interactions Based Optimization (GRIBO). The algorithm mimics different energy loss processes of a gamma-ray photon during its passage through a matter. The proposed novel algorithm has been applied to search for the global minima of 30 standard benchmark functions. The paper also considers solving real optimization problem in the field of nuclear engineering, radioisotope identification. The results are compared with those obtained by the Particle Swarm Optimization, Genetic Algorithm, Gravitational Search Algorithm and Grey Wolf Optimizer algorithms. The comparisons indicate that the GRIBO algorithm is able to provide very competitive results compared to other well-known meta-heuristics.

대기시간 최소화 문제를 위한 메타 휴리스틱 해법의 개발 (Developing Meta heuristics for the minimum latency problem)

  • 양병학
    • 대한안전경영과학회지
    • /
    • 제11권4호
    • /
    • pp.213-220
    • /
    • 2009
  • The minimum latency problem, also known as the traveling repairman problem and the deliveryman problem is to minimize the overall waiting times of customers, not to minimize their routing times. In this research, a genetic algorithm, a clonal selection algorithm and a population management genetic algorithm are introduced. The computational experiment shows the objective value of the clonal selection algorithm is the best among the three algorithms and the calculating time of the population management genetic algorithm is the best among the three algorithms.

Simulated Annealing Algorithm의 변형을 지원하기 위한 객체지향 프레임워크 설계 (Designing an Object-Oriented Framework for the Variants of Simulated Annealing Algorithm)

  • 정영일;유제석;전진;김창욱
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2004년도 춘계공동학술대회 논문집
    • /
    • pp.409-412
    • /
    • 2004
  • Today, meta-heuristic algorithms have been much attention by researcher because they have the power of solving combinational optimization problems efficiently. As the result, many variants of a meta-heuristic algorithm (e.g., simulated annealing) have been proposed for specific application domains. However, there are few efforts to classify them into a unified software framework, which is believed to provide the users with the reusability of the software, thereby significantly reducing the development time of algorithms. In this paper, we present an object-oriented framework to be used as a general tool for efficiently developing variants of simulated annealing algorithm. The interface classes in the framework achieve the modulization of the algorithm, and the users are allowed to specialize some of the classes appropriate for solving their problems. The core of the framework is Algorithm Configuration Pattern (ACP) which facilitates creating user-specific variants flexibly. Finally, we summarize our experiences and discuss future research topics.

  • PDF

Colliding bodies optimization for size and topology optimization of truss structures

  • Kaveh, A.;Mahdavi, V.R.
    • Structural Engineering and Mechanics
    • /
    • 제53권5호
    • /
    • pp.847-865
    • /
    • 2015
  • This paper presents the application of a recently developed meta-heuristic algorithm, called Colliding Bodies Optimization (CBO), for size and topology optimization of steel trusses. This method is based on the one-dimensional collisions between two bodies, where each agent solution is considered as a body. The performance of the proposed algorithm is investigated through four benchmark trusses for minimum weight with static and dynamic constraints. A comparison of the numerical results of the CBO with those of other available algorithms indicates that the proposed technique is capable of locating promising solutions using lesser or identical computational effort, with no need for internal parameter tuning.

A hybrid CSS and PSO algorithm for optimal design of structures

  • Kaveh, A.;Talatahari, S.
    • Structural Engineering and Mechanics
    • /
    • 제42권6호
    • /
    • pp.783-797
    • /
    • 2012
  • A new hybrid meta-heuristic optimization algorithm is presented for design of structures. The algorithm is based on the concepts of the charged system search (CSS) and the particle swarm optimization (PSO) algorithms. The CSS is inspired by the Coulomb and Gauss's laws of electrostatics in physics, the governing laws of motion from the Newtonian mechanics, and the PSO is based on the swarm intelligence and utilizes the information of the best fitness historically achieved by the particles (local best) and by the best among all the particles (global best). In the new hybrid algorithm, each agent is affected by local and global best positions stored in the charged memory considering the governing laws of electrical physics. Three different types of structures are optimized as the numerical examples with the new algorithm. Comparison of the results of the hybrid algorithm with those of other meta-heuristic algorithms proves the robustness of the new algorithm.

Meta-Heuristic Algorithms를 이용한 확률분포의 매개변수 추정 (Parameters Estimation of Probability Distributions Using Meta-Heuristic Algorithms)

  • 윤석민;이태삼;강명국;정창삼
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.464-464
    • /
    • 2012
  • 수문분야에 있어서 빈도해석의 목적은 특정 재현기간에 대한 발생 가능한 수문량의 규모를 파악하는데 있으며, 빈도해석의 정확도는 적합한 확률분포모형의 선택과 매개변수 추정방법에 의존하게 된다. 일반적으로 각 확률분포모형의 특성을 대표하는 매개변수를 추정하기 위해서는 모멘트 방법, 확률가중 모멘트 방법, 최대우도법 등을 이용하게 된다. 모멘트 방법에 의한 매개변수 추정은 해를 구하기 위한 과정이 단순한 반면, 비대칭형의 왜곡된 분포를 갖는 자료들에 대해서는 부정확한 결과를 나타내게 된다. 확률가중 모멘트 방법은 표본의 크기가 작거나 왜곡된 자료일 경우에도 비교적 안정적인 결과를 제공하는 반면, 확률 가중치가 정수로만 제한되는 단점을 갖고 있다. 그리고 대수 우도함수를 이용하여 매개변수를 추정하게 되는 최우도법은 가장 효율적인 매개변수 추정치를 얻을 수 있는 것으로 알려져 있으나, 비선형 연립방정식으로 표현되는 해를 구하기 위해서는 Newton-Raphson 방법을 사용하는 등 절차가 복잡하며, 때로는 수렴이 되지 않아 해룰 구하지 못하는 경우가 발생되게 된다. 이에 반해, 최근의 Genetic Algorithm, Ant Colony Optimization 및 Simulated Annealing과 같은 Meta-Heuristic Algorithm들은 복잡합 공학적 최적화 문제 있어서 효율적인 대안으로 주목받고 있으며, Hassanzadeh et al.(2011)에 의해 수문학적 빈도해석을 위한 매개변수 추정에 있어서도 그 적용성이 검증된바 있다. 본 연구의 목적은 연 최대강수 자료의 빈도해석에 적용되는 확률분포모형들의 매개변수 추정을 위해 Meta-Heuristic Algorithm을 적용하고자 함에 있다. 따라서 본 연구에서는 매개변수 추정을 위한 방법으로 Genetic Algorithm 및 Harmony Search를 적용하였고, 그 결과를 최우도법에 의한 결과와 비교하였다. GEV 분포를 이용하여 Simulation Test를 수행한 결과 Genetic Algorithm을 이용하여 추정된 매개변수들은 최우도법에 의한 결과들과 비교적 유사한 분포를 나타내었으나 과도한 계산시간이 요구되는 것으로 나타났다. 하지만 Harmony Search를 이용하여 추정된 매개변수들은 최우도법에 의한 결과들과 유사한 분포를 나타내었을 뿐만 아니라 계산시간 또한 매우 짧은 것으로 나타났다. 또한 국내 74개소의 강우관측소 자료와 Gamma, Log-normal, GEV 및 Gumbel 분포를 이용한 실증연구에 있어서도 Harmony Search를 이용한 매개변수 추정은 효율적인 매개 변수 추정치를 제공하는 것으로 나타났다.

  • PDF

Analysis of cable structures through energy minimization

  • Toklu, Yusuf Cengiz;Bekdas, Gebrail;Temur, Rasim
    • Structural Engineering and Mechanics
    • /
    • 제62권6호
    • /
    • pp.749-758
    • /
    • 2017
  • In structural mechanics, traditional analyses methods usually employ matrix operations for obtaining displacement and internal forces of the structure under the external effects, such as distributed loads, earthquake or wind excitations, and temperature changing inter alia. These matrices are derived from the well-known principle of mechanics called minimum potential energy. According to this principle, a system can be in the equilibrium state only in case when the total potential energy of system is minimum. A close examination of the expression of the well-known equilibrium condition for linear problems, $P=K{\Delta}$, where P is the load vector, K is the stiffness matrix and ${\Delta}$ is the displacement vector, it is seen that, basically this principle searches the displacement set (or deformed shape) for a system that minimizes the total potential energy of it. Instead of using mathematical operations used in the conventional methods, with a different formulation, meta-heuristic algorithms can also be used for solving this minimization problem by defining total potential energy as objective function and displacements as design variables. Based on this idea the technique called Total Potential Optimization using Meta-heuristic Algorithms (TPO/MA) is proposed. The method has been successfully applied for linear and non-linear analyses of trusses and truss-like structures, and the results have shown that the approach is much more successful than conventional methods, especially for analyses of non-linear systems. In this study, the application of TPO/MA, with Harmony Search as the selected meta-heuristic algorithm, to cables net system is presented. The results have shown that the method is robust, powerful and accurate.

이변수 다항식 문제에 대한 새로운 메타 휴리스틱 개발 (Development of New Meta-Heuristic For a Bivariate Polynomial)

  • 장성호;권문수;김근태;이종환
    • 산업경영시스템학회지
    • /
    • 제44권2호
    • /
    • pp.58-65
    • /
    • 2021
  • Meta-heuristic algorithms have been developed to efficiently solve difficult problems and obtain a global optimal solution. A common feature mimics phenomenon occurring in nature and reliably improves the solution through repetition. And at the same time, the probability is used to deviate from the regional optimal solution and approach the global optimal solution. This study compares the algorithm created based on the above common points with existed SA and HS to show advantages in time and accuracy of results. Existing algorithms have problems of low accuracy, high memory, long runtime, and ignorance. In a two-variable polynomial, the existing algorithms show that the memory increases and the accuracy decrease. In order to improve the accuracy, the new algorithm increases the number of initial inputs and increases the efficiency of the search by introducing a direction using vectors. And, in order to solve the optimization problem, the results of the last experiment were learned to show the learning effect in the next experiment. The new algorithm found a solution in a short time under the experimental conditions of long iteration counts using a two-variable polynomial and showed high accuracy. And, it shows that the learning effect is effective in repeated experiments.

PSA: A Photon Search Algorithm

  • Liu, Yongli;Li, Renjie
    • Journal of Information Processing Systems
    • /
    • 제16권2호
    • /
    • pp.478-493
    • /
    • 2020
  • We designed a new meta-heuristic algorithm named Photon Search Algorithm (PSA) in this paper, which is motivated by photon properties in the field of physics. The physical knowledge involved in this paper includes three main concepts: Principle of Constancy of Light Velocity, Uncertainty Principle and Pauli Exclusion Principle. Based on these physical knowledges, we developed mathematical formulations and models of the proposed algorithm. Moreover, in order to confirm the convergence capability of the algorithm proposed, we compared it with 7 unimodal benchmark functions and 23 multimodal benchmark functions. Experimental results indicate that PSA has better global convergence and higher searching efficiency. Although the performance of the algorithm in solving the optimal solution of certain functions is slightly inferior to that of the existing heuristic algorithm, it is better than the existing algorithm in solving most functions. On balance, PSA has relatively better convergence performance than the existing metaheuristic algorithms.