• Title/Summary/Keyword: Meta-Heuristics

Search Result 50, Processing Time 0.029 seconds

Ant Colony System for solving the traveling Salesman Problem Considering the Overlapping Edge of Global Best Path (순회 외판원 문제를 풀기 위한 전역 최적 경로의 중복 간선을 고려한 개미 집단 시스템)

  • Lee, Seung-Gwan;Kang, Myung-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.3
    • /
    • pp.203-210
    • /
    • 2011
  • Ant Colony System is a new meta heuristics algorithms to solve hard combinatorial optimization problems. It is a population based approach that uses exploitation of positive feedback as well as greedy search. It was first proposed for tackling the well known Traveling Salesman Problem. In this paper, we propose the searching method to consider the overlapping edge of the global best path of the previous and the current. This method is that we first determine the overlapping edge of the global best path of the previous and the current will be configured likely the optimal path. And, to enhance the pheromone for the overlapping edges increases the probability that the optimal path is configured. Finally, the performance of Best and Average-Best of proposed algorithm outperforms ACS-3-opt, ACS-Subpath and ACS-Iter algorithms.

Neuro-fuzzy optimisation to model the phenomenon of failure by punching of a slab-column connection without shear reinforcement

  • Hafidi, Mariam;Kharchi, Fattoum;Lefkir, Abdelouhab
    • Structural Engineering and Mechanics
    • /
    • v.47 no.5
    • /
    • pp.679-700
    • /
    • 2013
  • Two new predictive design methods are presented in this study. The first is a hybrid method, called neuro-fuzzy, based on neural networks with fuzzy learning. A total of 280 experimental datasets obtained from the literature concerning concentric punching shear tests of reinforced concrete slab-column connections without shear reinforcement were used to test the model (194 for experimentation and 86 for validation) and were endorsed by statistical validation criteria. The punching shear strength predicted by the neuro-fuzzy model was compared with those predicted by current models of punching shear, widely used in the design practice, such as ACI 318-08, SIA262 and CBA93. The neuro-fuzzy model showed high predictive accuracy of resistance to punching according to all of the relevant codes. A second, more user-friendly design method is presented based on a predictive linear regression model that supports all the geometric and material parameters involved in predicting punching shear. Despite its simplicity, this formulation showed accuracy equivalent to that of the neuro-fuzzy model.

A Nature-inspired Multiple Kernel Extreme Learning Machine Model for Intrusion Detection

  • Shen, Yanping;Zheng, Kangfeng;Wu, Chunhua;Yang, Yixian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.702-723
    • /
    • 2020
  • The application of machine learning (ML) in intrusion detection has attracted much attention with the rapid growth of information security threat. As an efficient multi-label classifier, kernel extreme learning machine (KELM) has been gradually used in intrusion detection system. However, the performance of KELM heavily relies on the kernel selection. In this paper, a novel multiple kernel extreme learning machine (MKELM) model combining the ReliefF with nature-inspired methods is proposed for intrusion detection. The MKELM is designed to estimate whether the attack is carried out and the ReliefF is used as a preprocessor of MKELM to select appropriate features. In addition, the nature-inspired methods whose fitness functions are defined based on the kernel alignment are employed to build the optimal composite kernel in the MKELM. The KDD99, NSL and Kyoto datasets are used to evaluate the performance of the model. The experimental results indicate that the optimal composite kernel function can be determined by using any heuristic optimization method, including PSO, GA, GWO, BA and DE. Since the filter-based feature selection method is combined with the multiple kernel learning approach independent of the classifier, the proposed model can have a good performance while saving a lot of training time.

A Metaheuristic Approach Towards Enhancement of Network Lifetime in Wireless Sensor Networks

  • J. Samuel Manoharan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1276-1295
    • /
    • 2023
  • Sensor networks are now an essential aspect of wireless communication, especially with the introduction of new gadgets and protocols. Their ability to be deployed anywhere, especially where human presence is undesirable, makes them perfect choices for remote observation and control. Despite their vast range of applications from home to hostile territory monitoring, limited battery power remains a limiting factor in their efficacy. To analyze and transmit data, it requires intelligent use of available battery power. Several studies have established effective routing algorithms based on clustering. However, choosing optimal cluster heads and similarity measures for clustering significantly increases computing time and cost. This work proposes and implements a simple two-phase technique of route creation and maintenance to ensure route reliability by employing nature-inspired ant colony optimization followed by the fuzzy decision engine (FDE). Benchmark methods such as PSO, ACO and GWO are compared with the proposed HRCM's performance. The objective has been focused towards establishing the superiority of proposed work amongst existing optimization methods in a standalone configuration. An average of 15% improvement in energy consumption followed by 12% improvement in latency reduction is observed in proposed hybrid model over standalone optimization methods.

Usefulness of Drones in the Urban Delivery System: Solving the Vehicle and Drone Routing Problem with Time Window (배송 네트워크에서 드론의 유용성 검증: 차량과 드론을 혼용한 배송 네트워크의 경로계획)

  • Chung, Yerim;Park, Taejoon;Min, Yunhong
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.41 no.3
    • /
    • pp.75-96
    • /
    • 2016
  • This paper investigates the usefulness of drones in an urban delivery system. We define the vehicle and drone routing problem with time window (VDRPTW) and present a model that can describe a dual mode delivery system consisting of drones and vehicles in the metropolitan area. Drones are relatively free from traffic congestion but have limited flight range and capacity. Vehicles are not free from traffic congestion, and the complexity of urban road network reduces the efficiency of vehicles. Using drones and vehicles together can reduce inefficiency of the urban delivery system because of their complementary cooperation. In this paper, we assume that drones operate in a point-to-point manner between the depot and customers, and that customers in the need of fast delivery are willing to pay additional charges. For the experiment datasets, we use instances of Solomon (1987), which are well known in the Vehicle Routing Problem society. Moreover, to mirror the urban logistics demand trend, customers who want fast delivery are added to the Solomon's instances. We propose a hybrid evolutionary algorithm for solving VDRPTW. The experiment results provide different useful insights according to the geographical distributions of customers. In the instances where customers are randomly located and in instances where some customers are randomly located while others form some clusters, the dual mode delivery system displays lower total cost and higher customer satisfaction. In instances with clustered customers, the dual mode delivery system exhibits narrow competition for the total cost with the delivery system that uses only vehicles. In this case, using drones and vehicles together can reduce the level of dissatisfaction of customers who take their cargo over the time-window. From the view point of strategic flexibility, the dual mode delivery system appears to be more interesting. In meeting the objective of maximizing customer satisfaction, the use of drones and vehicles incurs less cost and requires fewer resources.

Convergence Characteristics of Ant Colony Optimization with Selective Evaluation in Feature Selection (특징 선택에서 선택적 평가를 사용하는 개미 군집 최적화의 수렴 특성)

  • Lee, Jin-Seon;Oh, Il-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.10
    • /
    • pp.41-48
    • /
    • 2011
  • In feature selection, the selective evaluation scheme for Ant Colony Optimization(ACO) has recently been proposed, which reduces computational load by excluding unnecessary or less promising candidate solutions from the actual evaluation. Its superiority was supported by experimental results. However the experiment seems to be not statistically sufficient since it used only one dataset. The aim of this paper is to analyze convergence characteristics of the selective evaluation scheme and to make the conclusion more convincing. We chose three datasets related to handwriting, medical, and speech domains from UCI repository whose feature set size ranges from 256 to 617. For each of them, we executed 12 independent runs in order to obtain statistically stable data. Each run was given 72 hours to observe the long-time convergence. Based on analysis of experimental data, we describe a reason for the superiority and where the scheme can be applied.

An Efficient Optimization Technique for Node Clustering in VANETs Using Gray Wolf Optimization

  • Khan, Muhammad Fahad;Aadil, Farhan;Maqsood, Muazzam;Khan, Salabat;Bukhari, Bilal Haider
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4228-4247
    • /
    • 2018
  • Many methods have been developed for the vehicles to create clusters in vehicular ad hoc networks (VANETs). Usually, nodes are vehicles in the VANETs, and they are dynamic in nature. Clusters of vehicles are made for making the communication between the network nodes. Cluster Heads (CHs) are selected in each cluster for managing the whole cluster. This CH maintains the communication in the same cluster and with outside the other cluster. The lifetime of the cluster should be longer for increasing the performance of the network. Meanwhile, lesser the CH's in the network also lead to efficient communication in the VANETs. In this paper, a novel algorithm for clustering which is based on the social behavior of Gray Wolf Optimization (GWO) for VANET named as Intelligent Clustering using Gray Wolf Optimization (ICGWO) is proposed. This clustering based algorithm provides the optimized solution for smooth and robust communication in the VANETs. The key parameters of proposed algorithm are grid size, load balance factor (LBF), the speed of the nodes, directions and transmission range. The ICGWO is compared with the well-known meta-heuristics, Multi-Objective Particle Swarm Optimization (MOPSO) and Comprehensive Learning Particle Swarm Optimization (CLPSO) for clustering in VANETs. Experiments are performed by varying the key parameters of the ICGWO, for measuring the effectiveness of the proposed algorithm. These parameters include grid sizes, transmission ranges, and a number of nodes. The effectiveness of the proposed algorithm is evaluated in terms of optimization of number of cluster with respect to transmission range, grid size and number of nodes. ICGWO selects the 10% of the nodes as CHs where as CLPSO and MOPSO selects the 13% and 14% respectively.

An Improved Genetic Algorithm for Integrated Planning and Scheduling Algorithm Considering Tool Flexibility and Tool Constraints (공구유연성과 공구관련제약을 고려한 통합공정일정계획을 위한 유전알고리즘)

  • Kim, Young-Nam;Ha, Chunghun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.2
    • /
    • pp.111-120
    • /
    • 2017
  • This paper proposes an improved standard genetic algorithm (GA) of making a near optimal schedule for integrated process planning and scheduling problem (IPPS) considering tool flexibility and tool related constraints. Process planning involves the selection of operations and the allocation of resources. Scheduling, meanwhile, determines the sequence order in which operations are executed on each machine. Due to the high degree of complexity, traditionally, a sequential approach has been preferred, which determines process planning firstly and then performs scheduling independently based on the results. The two sub-problems, however, are complicatedly interrelated to each other, so the IPPS tend to solve the two problems simultaneously. Although many studies for IPPS have been conducted in the past, tool flexibility and capacity constraints are rarely considered. Various meta-heuristics, especially GA, have been applied for IPPS, but the performance is yet satisfactory. To improve solution quality against computation time in GA, we adopted three methods. First, we used a random circular queue during generation of an initial population. It can provide sufficient diversity of individuals at the beginning of GA. Second, we adopted an inferior selection to choose the parents for the crossover and mutation operations. It helps to maintain exploitation capability throughout the evolution process. Third, we employed a modification of the hybrid scheduling algorithm to decode the chromosome of the individual into a schedule, which can generate an active and non-delay schedule. The experimental results show that our proposed algorithm is superior to the current best evolutionary algorithms at most benchmark problems.

School Bus Routing Problem with Mixed-Load and Dynamic Arrivals (혼승 및 시간대별 학생들의 동적유입을 고려한 스쿨버스 경로 문제)

  • Lee, Young-Ki;Jeong, Suk-Jae;Yun, Ho-Young;Kim, Kyung-Sup
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.1
    • /
    • pp.63-75
    • /
    • 2013
  • The School Bus Routing Problem(SBRP) seeks to plan an efficient schedule of a fleet of school buses that must pick up student from various bus stops and deliver them by satisfying various constraints; maximum capacity of the bus, maximum riding time of students, arrival time between a school's time window. By extending the existing SBRP, we consider a case study of SBRP with allowance of mixed-loading and dynamic arrivals reflecting the school bus operation of university in Korea. Our solution procedure is based on constructing the initial solution using sweep algorithm and then improving solution within the framework of the evolutionary approach known as efficient meta-heuristics. By comparing the various scenarios through the constraints relaxation for reflecting the real operational strategies, we assess the merit of our proposed procedure.

A Study of Multi-to-Majority Response on Threat Assessment and Weapon Assignment Algorithm: by Adjusting Ballistic Missiles and Long-Range Artillery Threat (다대다 대응 위협평가 및 무기할당 알고리즘 연구: 탄도미사일 및 장사정포 위협을 중심으로)

  • Im, Jun Sung;Yoo, Byeong Chun;Kim, Ju Hyun;Choi, Bong Wan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.43-52
    • /
    • 2021
  • In weapon assignment studies to defend against threats such as ballistic missiles and long range artillery, threat assessment was partially lacking in analysis of various threat attributes, and considering the threat characteristics of warheads, which are difficult to judge in the early flight stages, it is very important to apply more reliable optimal solutions than approximate solution using LP model, Meta heuristics Genetic Algorithm, Tabu search and Particle swarm optimization etc. Our studies suggest Generic Rule based threat evaluation and weapon assignment algorithm in the basis of various attributes of threats. First job of studies analyzes information on Various attributes such as the type of target, Flight trajectory and flight time, range and intercept altitude of the intercept system, etc. Second job of studies propose Rule based threat evaluation and weapon assignment algorithm were applied to obtain a more reliable solution by reflection the importance of the interception system. It analyzes ballistic missiles and long-range artillery was assigned to multiple intercept system by real time threat assessment reflecting various threat information. The results of this study are provided reliable solution for Weapon Assignment problem as well as considered to be applicable to establishing a missile and long range artillery defense system.