• Title/Summary/Keyword: Meta-Heuristics

Search Result 50, Processing Time 0.025 seconds

Analysis of trusses by total potential optimization method coupled with harmony search

  • Toklu, Yusuf Cengiz;Bekdas, Gebrail;Temur, Rasim
    • Structural Engineering and Mechanics
    • /
    • v.45 no.2
    • /
    • pp.183-199
    • /
    • 2013
  • Current methods of analysis of trusses depend on matrix formulations based on equilibrium equations which are in fact derived from energy principles, and compatibility conditions. Recently it has been shown that the minimum energy principle, by itself, in its pure and unmodified form, can well be exploited to analyze structures when coupled with an optimization algorithm, specifically with a meta-heuristic algorithm. The resulting technique that can be called Total Potential Optimization using Meta-heuristic Algorithms (TPO/MA) has already been applied to analyses of linear and nonlinear plane trusses successfully as coupled with simulated annealing and local search algorithms. In this study the technique is applied to both 2-dimensional and 3-dimensional trusses emphasizing robustness, reliability and accuracy. The trials have shown that the technique is robust in two senses: all runs result in answers, and all answers are acceptable as to the reliability and accuracy within the prescribed limits. It has also been shown that Harmony Search presents itself as an appropriate algorithm for the purpose.

The Effect of Sample and Particle Sizes in Discrete Particle Swarm Optimization for Simulation-based Optimization Problems (시뮬레이션 최적화 문제 해결을 위한 이산 입자 군집 최적화에서 샘플수와 개체수의 효과)

  • Yim, Dong-Soon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.1
    • /
    • pp.95-104
    • /
    • 2017
  • This paper deals with solution methods for discrete and multi-valued optimization problems. The objective function of the problem incorporates noise effects generated in case that fitness evaluation is accomplished by computer based experiments such as Monte Carlo simulation or discrete event simulation. Meta heuristics including Genetic Algorithm (GA) and Discrete Particle Swarm Optimization (DPSO) can be used to solve these simulation based multi-valued optimization problems. In applying these population based meta heuristics to simulation based optimization problem, samples size to estimate the expected fitness value of a solution and population (particle) size in a generation (step) should be carefully determined to obtain reliable solutions. Under realistic environment with restriction on available computation time, there exists trade-off between these values. In this paper, the effects of sample and population sizes are analyzed under well-known multi-modal and multi-dimensional test functions with randomly generated noise effects. From the experimental results, it is shown that the performance of DPSO is superior to that of GA. While appropriate determination of population sizes is more important than sample size in GA, appropriate determination of sample size is more important than particle size in DPSO. Especially in DPSO, the solution quality under increasing sample sizes with steps is inferior to constant or decreasing sample sizes with steps. Furthermore, the performance of DPSO is improved when OCBA (Optimal Computing Budget Allocation) is incorporated in selecting the best particle in each step. In applying OCBA in DPSO, smaller value of incremental sample size is preferred to obtain better solutions.

Multi Colony Ant Model using Positive.Negative Interaction between Colonies (집단간 긍정적.부정적 상호작용을 이용한 다중 집단 개미 모델)

  • Lee, Seung-Gwan;Chung, Tae-Choong
    • The KIPS Transactions:PartB
    • /
    • v.10B no.7
    • /
    • pp.751-756
    • /
    • 2003
  • Ant Colony Optimization (ACO) is new meta heuristics method to solve hard combinatorial optimization problem. It is a population based approach that uses exploitation of positive feedback as well as greedy search. It was firstly proposed for tackling the well known Traveling Salesman Problem (TSP) . In this paper, we introduce Multi Colony Ant Model that achieve positive interaction and negative interaction through Intensification and Diversification to improve original ACS performance. This algorithm is a method to solve problem through interaction between ACS groups that consist of some agent colonies to solve TSP problem. In this paper, we apply this proposed method to TSP problem and evaluates previous method and comparison for the performance and we wish to certify that qualitative level of problem solution is excellent.

The Effect of Multiagent Interaction Strategy on the Performance of Ant Model (개미 모델 성능에서 다중 에이전트 상호작용 전략의 효과)

  • Lee Seung-Gwan
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.3
    • /
    • pp.193-199
    • /
    • 2005
  • One of the important fields for heuristics algorithm is how to balance between Intensificationand Diversification. Ant Colony System(ACS) is a new meta heuristics algorithm to solve hard combinatorial optimization problem. It is a population based approach that uses exploitation of positive feedback as well as greedy search. It was first proposed for tackling the well known Traveling Salesman Problem(TSP). In this paper, we propose Multi Colony Interaction Ant Model that achieves positive negative interaction through elite strategy divided by intensification strategy and diversification strategy to improve the performance of original ACS. And, we apply multi colony interaction ant model by this proposed elite strategy to TSP and compares with original ACS method for the performance.

  • PDF

GA-VNS-HC Approach for Engineering Design Optimization Problems (공학설계 최적화 문제 해결을 위한 GA-VNS-HC 접근법)

  • Yun, YoungSu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.1
    • /
    • pp.37-48
    • /
    • 2022
  • In this study, a hybrid meta-heuristic approach is proposed for solving engineering design optimization problems. Various approaches in many literatures have been proposed to solve engineering optimization problems with various types of decision variables and complex constraints. Unfortunately, however, their efficiencies for locating optimal solution do not be highly improved. Therefore, we propose a hybrid meta-heuristic approach for improving their weaknesses. the proposed GA-VNS-HC approach is combining genetic algorithm (GA) for global search with variable neighborhood search (VNS) and hill climbing (HC) for local search. In case study, various types of engineering design optimization problems are used for proving the efficiency of the proposed GA-VNS-HC approach

A Variable Neighbourhood Descent Algorithm for the Redundancy Allocation Problem

  • Liang, Yun-Chia;Wu, Chia-Chuan
    • Industrial Engineering and Management Systems
    • /
    • v.4 no.1
    • /
    • pp.94-101
    • /
    • 2005
  • This paper presents the first known application of a meta-heuristic algorithm, variable neighbourhood descent (VND), to the redundancy allocation problem (RAP). The RAP, a well-known NP-hard problem, has been the subject of much prior work, generally in a restricted form where each subsystem must consist of identical components. The newer meta-heuristic methods overcome this limitation and offer a practical way to solve large instances of the relaxed RAP where different components can be used in parallel. The variable neighbourhood descent method has not yet been used in reliability design, yet it is a method that fits perfectly in those combinatorial problems with potential neighbourhood structures, as in the case of the RAP. A variable neighbourhood descent algorithm for the RAP is developed and tested on a set of well-known benchmark problems from the literature. Results on 33 test problems ranging from less to severely constrained conditions show that the variable neighbourhood descent method provides comparable solution quality at a very moderate computational cost in comparison with the best-known heuristics. Results also indicate that the VND method performs with little variability over random number seeds.

Performance Comparison of GA, DE, PSO and SA Approaches in Enhancement of Total Transfer Capability using FACTS Devices

  • Chandrasekar, K.;Ramana, N.V.
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.493-500
    • /
    • 2012
  • In this paper the performance of meta-heuristics algorithms such as GA (Genetic Algorithm), DE (Differential Evolution), PSO (Particle Swarm Optimization) and SA (Simulated Annealing) for the problem of TTC enhancement using FACTS devices are compared. In addition to that in the assessment procedure of TTC two novel techniques are proposed. First the optimization algorithm which is used for TTC enhancement is simultaneously used for assessment of TTC. Second the power flow is done using Broyden - Shamanski method with Sherman - Morrison formula (BSS). The proposed approach is tested on WSCC 9 bus, IEEE 118 bus test systems and the results are compared with the conventional Repeated Power Flow (RPF) using Newton Raphson (NR) method which indicates that the proposed method provides better TTC enhancement and computational efficacy than the conventional procedure.

A Geometrical Center based Two-way Search Heuristic Algorithm for Vehicle Routing Problem with Pickups and Deliveries

  • Shin, Kwang-Cheol
    • Journal of Information Processing Systems
    • /
    • v.5 no.4
    • /
    • pp.237-242
    • /
    • 2009
  • The classical vehicle routing problem (VRP) can be extended by including customers who want to send goods to the depot. This type of VRP is called the vehicle routing problem with pickups and deliveries (VRPPD). This study proposes a novel way to solve VRPPD by introducing a two-phase heuristic routing algorithm which consists of a clustering phase and uses the geometrical center of a cluster and route establishment phase by applying a two-way search of each route after applying the TSP algorithm on each route. Experimental results show that the suggested algorithm can generate better initial solutions for more computer-intensive meta-heuristics than other existing methods such as the giant-tour-based partitioning method or the insertion-based method.

Optimum design of a walking tractor handlebar through many-objective optimisation

  • Mahachai, Apichit;Bureerat, Sujin;Pholdee, Nantiwat
    • Advances in Computational Design
    • /
    • v.2 no.4
    • /
    • pp.273-281
    • /
    • 2017
  • In this work, a comparative study of multi-objective meta-heuristics (MOMHs) for optimum design of a walking tractor handlebar is conducted in order to reduce the structural mass and increase structural static and dynamic stiffness. The design problem has objective functions as maximising structural natural frequencies, minimising structural mass, bending deflection and torsional deflection with stress constraints. The problem is classified as a many-objective optimisation since there are more than three objectives. Design variables are structural shape and size. Several well established multi-objective optimisers are employed to solve the proposed many-objective optimisation problems of the walking tractor handlebar. The results are compared whereas optimum design solutions of the walking tractor handlebar are illustrated.

Lion Optimization Algorithm (LOA): A nature-inspired metaheuristic algorithm

  • Yazdani, Maziar;Jolai, Fariborz
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.1
    • /
    • pp.24-36
    • /
    • 2016
  • During the past decade, solving complex optimization problems with metaheuristic algorithms has received considerable attention among practitioners and researchers. Hence, many metaheuristic algorithms have been developed over the last years. Many of these algorithms are inspired by various phenomena of nature. In this paper, a new population based algorithm, the Lion Optimization Algorithm (LOA), is introduced. Special lifestyle of lions and their cooperation characteristics has been the basic motivation for development of this optimization algorithm. Some benchmark problems are selected from the literature, and the solution of the proposed algorithm has been compared with those of some well-known and newest meta-heuristics for these problems. The obtained results confirm the high performance of the proposed algorithm in comparison to the other algorithms used in this paper.