• 제목/요약/키워드: Meta-Heuristics

검색결과 50건 처리시간 0.019초

설비배치계획에서의 개미 알고리듬 응용 (Ant Algorithm Based Facility Layout Planning)

  • 이성열;이월선
    • 한국산업정보학회논문지
    • /
    • 제13권5호
    • /
    • pp.142-148
    • /
    • 2008
  • Facility Layout Planning is concerned with how to arrange facilities necessary for production in a given space. Its objective is often to minimize the total sum of all material flows multiplied by the distance among facilities. FLP belongs to NP complete problem; i.e., the number of possible layout solutions increases with the increase of the number of facilities. Thus, meta heuristics such as Genetic Algorithm (GA) and Simulated Annealing have been investigated to solve the FLP problems. However, one of the biggest problems which lie in the existing meta heuristics including GA is hard to find an appropriate combinations of parameters which result in optimal solutions for the specific problem. The Ant System algorithm with elitist and ranking strategies is used to solve the FLP problem as an another good alternative. Experimental results show that the AS algorithm is able to produce the same level of solution quality with less sensitive parameters selection comparing to the ones obtained by applying other existing meta heuristic algorithms.

  • PDF

Structural health monitoring through meta-heuristics - comparative performance study

  • Pholdee, Nantiwat;Bureerat, Sujin
    • Advances in Computational Design
    • /
    • 제1권4호
    • /
    • pp.315-327
    • /
    • 2016
  • Damage detection and localisation in structures is essential since it can be a means for preventive maintenance of those structures under service conditions. The use of structural modal data for detecting the damage is one of the most efficient methods. This paper presents comparative performance of various state-of-the-art meta-heuristics for use in structural damage detection based on changes in modal data. The metaheuristics include differential evolution (DE), artificial bee colony algorithm (ABC), real-code ant colony optimisation (ACOR), charged system search (ChSS), league championship algorithm (LCA), simulated annealing (SA), particle swarm optimisation (PSO), evolution strategies (ES), teaching-learning-based optimisation (TLBO), adaptive differential evolution (JADE), evolution strategy with covariance matrix adaptation (CMAES), success-history based adaptive differential evolution (SHADE) and SHADE with linear population size reduction (L-SHADE). Three truss structures are used to pose several test problems for structural damage detection. The meta-heuristics are then used to solve the test problems treated as optimisation problems. Comparative performance is carried out where the statistically best algorithms are identified.

Design of steel frames by an enhanced moth-flame optimization algorithm

  • Gholizadeh, Saeed;Davoudi, Hamed;Fattahi, Fayegh
    • Steel and Composite Structures
    • /
    • 제24권1호
    • /
    • pp.129-140
    • /
    • 2017
  • Structural optimization is one of the popular and active research areas in the field of structural engineering. In the present study, the newly developed moth-flame optimization (MFO) algorithm and its enhanced version termed as enhanced moth-flame optimization (EMFO) are employed to implement the optimization process of planar and 3D steel frame structures with discrete design variables. The main inspiration of this optimizer is the navigation method of moths in nature called transverse orientation. A number of benchmark steel frame optimization problems are solved by the MFO and EMFO algorithms and the results are compared with those of other meta-heuristics. The obtained numerical results indicate that the proposed EMFO algorithm possesses better computational performance compared with other existing meta-heuristics.

개미 알고리듬을 이용한 설비배치계획 (Facility Layout Planning Using Ant Algorithm)

  • 이성열;이월선
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회/대한산업공학회 2003년도 춘계공동학술대회
    • /
    • pp.1065-1070
    • /
    • 2003
  • Facility Layout Planning is concerned with how to arrange facilities necessary for production in a given space. Its objective is often to minimize the total sum of all material flows multiplied by the distance among facilities. FLP belongs to NP complete problem; i.e., the number of possible layout solutions increases with the increase of the number of facilities. Thus, meta heuristics such as Genetic Algorithm (GA) and Simulated Annealing have been investigated to solve the FLP problems. However, one of the biggest problems which lie in the existing meta heuristics including GA is hard to find an appropriate combinations of parameters which result in optimal solutions for the specific problem. The Ant System algorithm with elitist and ranking strategies is used to solve the FLP problem as an another good alternative. Experimental results show that the AS algorithm is able to produce the same level of solution quality with less sensitive parameters selection comparing to the ones obtained by applying other existing meta heuristic algorithms.

  • PDF

다수준 시스템의 중복 할당 최적화 문제 (Multi-Level Redundancy Allocation Optimization Problems)

  • 윤원영;정일한;김종운
    • 대한산업공학회지
    • /
    • 제43권2호
    • /
    • pp.135-146
    • /
    • 2017
  • This paper considers redundancy optimization problems of multi-level systems and reviews existing papers which proposed various optimization models and used different algorithms in this research area. Three different mathematical models are studied: Multi-level redundancy allocation (MRAP), multiple multi-level redundancy allocation, and availability-based MRAP models. Many meta-heuristics are applied to find optimal solutions in the several optimization problems. We summarized key idea of meta-heuristics applied to the existing MARP problems. Two extended models (MRAP with interval reliability of units and an integrated optimization problem of MRAP and preventive maintenance) are studied and further research ideas are discussed.

Synthesis of four-bar linkage motion generation using optimization algorithms

  • Phukaokaew, Wisanu;Sleesongsom, Suwin;Panagant, Natee;Bureerat, Sujin
    • Advances in Computational Design
    • /
    • 제4권3호
    • /
    • pp.197-210
    • /
    • 2019
  • Motion generation of a four-bar linkage is a type of mechanism synthesis that has a wide range of applications such as a pick-and-place operation in manufacturing. In this research, the use of meta-heuristics for motion generation of a four-bar linkage is demonstrated. Three problems of motion generation were posed as a constrained optimization probably using the weighted sum technique to handle two types of tracking errors. A simple penalty function technique was used to deal with design constraints while three meta-heuristics including differential evolution (DE), self-adaptive differential evolution (JADE) and teaching learning based optimization (TLBO) were employed to solve the problems. Comparative results and the effect of the constraint handling technique are illustrated and discussed.

혼합 흐름공정에서 라인 밸런싱을 위한 휴리스틱 개발 (Heuristics for Line Balancing in Hybrid Flowshops)

  • 이근철
    • 산업경영시스템학회지
    • /
    • 제30권3호
    • /
    • pp.94-102
    • /
    • 2007
  • In this paper, we consider a line balancing problem in hybrid flowshops where each workstation has identical parallel machines. The number of machines in each workstation is determined in ways of satisfying pre-specified throughput rate of the system. To minimize the total number of machines in the systems, we propose five heuristic methods and one simulated annealing method. Extensive computational experiments found the superiorities of two heuristic methods and the meta-heuristic.

EM 알고리즘 및 메타휴리스틱을 통한 다이나믹 환경에서의 베이지안 네트워크 학습 전파 프레임웍 (Learning and Propagation Framework of Bayesian Network using Meta-Heuristics and EM algorithm considering Dynamic Environments)

  • 추상현;이현수
    • 한국지능시스템학회논문지
    • /
    • 제26권5호
    • /
    • pp.335-342
    • /
    • 2016
  • 기 구축되어있는 베이지안 네트워크에서 다이나믹한 환경 변화가 발생 할 때, 관련된 베이지안 네트워크의 파라미터는 새롭게 형성된 데이터의 패턴에 적응하여 새로운 파라미터로 변경되어야 한다. 이때, 새로운 파라미터는 베이지안 네트워크의 인과관계를 고려하여 변경되어야 한다. 본 논문에서는 Expectation Maximization(EM)알고리즘과 Meta-Heuristics 기법 중 하나인 Harmony Search(HS)알고리즘을 이용한 다이나믹한 파라미터 업데이트 프레임웍을 제안한다. 일반적으로, EM 알고리즘은 숨겨진 파라미터를 추정하는데 유효한 알고리즘이지만 지역 최적값에 수렴한다는 단점을 가지고 있다. 이 문제를 해결하기 위해서 본 논문은 Maximum Likelihood Estimator(MLE)의 파라미터가 글로벌 최적값을 지향하도록 하기위하여 메타휴리스틱 방법론의 하나인 HS를 적용한다. 제안된 방법은 EM 알고리즘의 단점을 보완하고 글로벌 최적값에 수렴하는 MLE의 파라미터를 추정하여 다이나믹하게 변화하는 환경에서도 사용 가능한 베이지안 네트워크의 학습 및 전파프레임웍을 제시한다.

순회 판매원 문제를 위한 하이브리드 병렬 유전자 알고리즘 (Hybrid Parallel Genetic Algorithm for Traveling Salesman Problem)

  • 김기태;전건욱
    • 대한안전경영과학회지
    • /
    • 제13권3호
    • /
    • pp.107-114
    • /
    • 2011
  • Traveling salesman problem is to minimize the total cost for a traveling salesman who wants to make a tour given finite number of cities along with the cost of travel between each pair them, visiting each cities exactly once before returning home. Traveling salesman problem is known to be NP-hard, and it needs a lot of computing time to get the optimal solution, so that heuristics are more frequently developed than optimal algorithms. This study suggests a hybrid parallel genetic algorithm(HPGA) for traveling salesman problem The suggested algorithm combines parallel genetic algorithm, nearest neighbor search, and 2-opt. The suggested algorithm has been tested on 7 problems in TSPLIB and compared the results of existing methods(heuristics, meta-heuristics, hybrid, and parallel). Experimental results shows that HPGA could obtain good solution in total travel distance minimization.

Non-Identical Parallel Machine Scheduling with Sequence and Machine Dependent Setup Times Using Meta-Heuristic Algorithms

  • Joo, Cheol-Min;Kim, Byung-Soo
    • Industrial Engineering and Management Systems
    • /
    • 제11권1호
    • /
    • pp.114-122
    • /
    • 2012
  • This paper considers a non-identical parallel machine scheduling problem with sequence and machine dependent setup times. The objective of this problem is to determine the allocation of jobs and the scheduling of each machine to minimize makespan. A mathematical model for optimal solution is derived. An in-depth analysis of the model shows that it is very complicated and difficult to obtain optimal solutions as the problem size becomes large. Therefore, two meta-heuristics, genetic algorithm (GA) and a new population-based evolutionary meta-heuristic called self-evolution algorithm (SEA), are proposed. The performances of the meta-heuristic algorithms are evaluated through compare with optimal solutions using randomly generated several examples.