• Title/Summary/Keyword: Meta-Heuristics

Search Result 50, Processing Time 0.019 seconds

Ant Algorithm Based Facility Layout Planning (설비배치계획에서의 개미 알고리듬 응용)

  • Lee, Sung-Youl;Lee, Wol-Sun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.13 no.5
    • /
    • pp.142-148
    • /
    • 2008
  • Facility Layout Planning is concerned with how to arrange facilities necessary for production in a given space. Its objective is often to minimize the total sum of all material flows multiplied by the distance among facilities. FLP belongs to NP complete problem; i.e., the number of possible layout solutions increases with the increase of the number of facilities. Thus, meta heuristics such as Genetic Algorithm (GA) and Simulated Annealing have been investigated to solve the FLP problems. However, one of the biggest problems which lie in the existing meta heuristics including GA is hard to find an appropriate combinations of parameters which result in optimal solutions for the specific problem. The Ant System algorithm with elitist and ranking strategies is used to solve the FLP problem as an another good alternative. Experimental results show that the AS algorithm is able to produce the same level of solution quality with less sensitive parameters selection comparing to the ones obtained by applying other existing meta heuristic algorithms.

  • PDF

Structural health monitoring through meta-heuristics - comparative performance study

  • Pholdee, Nantiwat;Bureerat, Sujin
    • Advances in Computational Design
    • /
    • v.1 no.4
    • /
    • pp.315-327
    • /
    • 2016
  • Damage detection and localisation in structures is essential since it can be a means for preventive maintenance of those structures under service conditions. The use of structural modal data for detecting the damage is one of the most efficient methods. This paper presents comparative performance of various state-of-the-art meta-heuristics for use in structural damage detection based on changes in modal data. The metaheuristics include differential evolution (DE), artificial bee colony algorithm (ABC), real-code ant colony optimisation (ACOR), charged system search (ChSS), league championship algorithm (LCA), simulated annealing (SA), particle swarm optimisation (PSO), evolution strategies (ES), teaching-learning-based optimisation (TLBO), adaptive differential evolution (JADE), evolution strategy with covariance matrix adaptation (CMAES), success-history based adaptive differential evolution (SHADE) and SHADE with linear population size reduction (L-SHADE). Three truss structures are used to pose several test problems for structural damage detection. The meta-heuristics are then used to solve the test problems treated as optimisation problems. Comparative performance is carried out where the statistically best algorithms are identified.

Design of steel frames by an enhanced moth-flame optimization algorithm

  • Gholizadeh, Saeed;Davoudi, Hamed;Fattahi, Fayegh
    • Steel and Composite Structures
    • /
    • v.24 no.1
    • /
    • pp.129-140
    • /
    • 2017
  • Structural optimization is one of the popular and active research areas in the field of structural engineering. In the present study, the newly developed moth-flame optimization (MFO) algorithm and its enhanced version termed as enhanced moth-flame optimization (EMFO) are employed to implement the optimization process of planar and 3D steel frame structures with discrete design variables. The main inspiration of this optimizer is the navigation method of moths in nature called transverse orientation. A number of benchmark steel frame optimization problems are solved by the MFO and EMFO algorithms and the results are compared with those of other meta-heuristics. The obtained numerical results indicate that the proposed EMFO algorithm possesses better computational performance compared with other existing meta-heuristics.

Facility Layout Planning Using Ant Algorithm (개미 알고리듬을 이용한 설비배치계획)

  • Lee Seong Yeol;Lee Wol Seon
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.1065-1070
    • /
    • 2003
  • Facility Layout Planning is concerned with how to arrange facilities necessary for production in a given space. Its objective is often to minimize the total sum of all material flows multiplied by the distance among facilities. FLP belongs to NP complete problem; i.e., the number of possible layout solutions increases with the increase of the number of facilities. Thus, meta heuristics such as Genetic Algorithm (GA) and Simulated Annealing have been investigated to solve the FLP problems. However, one of the biggest problems which lie in the existing meta heuristics including GA is hard to find an appropriate combinations of parameters which result in optimal solutions for the specific problem. The Ant System algorithm with elitist and ranking strategies is used to solve the FLP problem as an another good alternative. Experimental results show that the AS algorithm is able to produce the same level of solution quality with less sensitive parameters selection comparing to the ones obtained by applying other existing meta heuristic algorithms.

  • PDF

Multi-Level Redundancy Allocation Optimization Problems (다수준 시스템의 중복 할당 최적화 문제)

  • Yun, Won Young;Chung, Il Han;Kim, Jong Woon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.43 no.2
    • /
    • pp.135-146
    • /
    • 2017
  • This paper considers redundancy optimization problems of multi-level systems and reviews existing papers which proposed various optimization models and used different algorithms in this research area. Three different mathematical models are studied: Multi-level redundancy allocation (MRAP), multiple multi-level redundancy allocation, and availability-based MRAP models. Many meta-heuristics are applied to find optimal solutions in the several optimization problems. We summarized key idea of meta-heuristics applied to the existing MARP problems. Two extended models (MRAP with interval reliability of units and an integrated optimization problem of MRAP and preventive maintenance) are studied and further research ideas are discussed.

Synthesis of four-bar linkage motion generation using optimization algorithms

  • Phukaokaew, Wisanu;Sleesongsom, Suwin;Panagant, Natee;Bureerat, Sujin
    • Advances in Computational Design
    • /
    • v.4 no.3
    • /
    • pp.197-210
    • /
    • 2019
  • Motion generation of a four-bar linkage is a type of mechanism synthesis that has a wide range of applications such as a pick-and-place operation in manufacturing. In this research, the use of meta-heuristics for motion generation of a four-bar linkage is demonstrated. Three problems of motion generation were posed as a constrained optimization probably using the weighted sum technique to handle two types of tracking errors. A simple penalty function technique was used to deal with design constraints while three meta-heuristics including differential evolution (DE), self-adaptive differential evolution (JADE) and teaching learning based optimization (TLBO) were employed to solve the problems. Comparative results and the effect of the constraint handling technique are illustrated and discussed.

Heuristics for Line Balancing in Hybrid Flowshops (혼합 흐름공정에서 라인 밸런싱을 위한 휴리스틱 개발)

  • Lee, Geun-Cheol
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.30 no.3
    • /
    • pp.94-102
    • /
    • 2007
  • In this paper, we consider a line balancing problem in hybrid flowshops where each workstation has identical parallel machines. The number of machines in each workstation is determined in ways of satisfying pre-specified throughput rate of the system. To minimize the total number of machines in the systems, we propose five heuristic methods and one simulated annealing method. Extensive computational experiments found the superiorities of two heuristic methods and the meta-heuristic.

Learning and Propagation Framework of Bayesian Network using Meta-Heuristics and EM algorithm considering Dynamic Environments (EM 알고리즘 및 메타휴리스틱을 통한 다이나믹 환경에서의 베이지안 네트워크 학습 전파 프레임웍)

  • Choo, Sanghyun;Lee, Hyunsoo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.335-342
    • /
    • 2016
  • When dynamics changes occurred in an existing Bayesian Network (BN), the related parameters embedding on the BN have to be updated to new parameters adapting to changed patterns. In this case, these parameters have to be updated with the consideration of the causalities in the BN. This research suggests a framework for updating parameters dynamically using Expectation Maximization (EM) algorithm and Harmony Search (HS) algorithm among several Meta-Heuristics techniques. While EM is an effective algorithm for estimating hidden parameters, it has a limitation that the generated solution converges a local optimum in usual. In order to overcome the limitation, this paper applies HS for tracking the global optimum values of Maximum Likelihood Estimators (MLE) of parameters. The proposed method suggests a learning and propagation framework of BN with dynamic changes for overcoming disadvantages of EM algorithm and converging a global optimum value of MLE of parameters.

Hybrid Parallel Genetic Algorithm for Traveling Salesman Problem (순회 판매원 문제를 위한 하이브리드 병렬 유전자 알고리즘)

  • Kim, Ki-Tae;Jeo, Geon-Wook
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.3
    • /
    • pp.107-114
    • /
    • 2011
  • Traveling salesman problem is to minimize the total cost for a traveling salesman who wants to make a tour given finite number of cities along with the cost of travel between each pair them, visiting each cities exactly once before returning home. Traveling salesman problem is known to be NP-hard, and it needs a lot of computing time to get the optimal solution, so that heuristics are more frequently developed than optimal algorithms. This study suggests a hybrid parallel genetic algorithm(HPGA) for traveling salesman problem The suggested algorithm combines parallel genetic algorithm, nearest neighbor search, and 2-opt. The suggested algorithm has been tested on 7 problems in TSPLIB and compared the results of existing methods(heuristics, meta-heuristics, hybrid, and parallel). Experimental results shows that HPGA could obtain good solution in total travel distance minimization.

Non-Identical Parallel Machine Scheduling with Sequence and Machine Dependent Setup Times Using Meta-Heuristic Algorithms

  • Joo, Cheol-Min;Kim, Byung-Soo
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.1
    • /
    • pp.114-122
    • /
    • 2012
  • This paper considers a non-identical parallel machine scheduling problem with sequence and machine dependent setup times. The objective of this problem is to determine the allocation of jobs and the scheduling of each machine to minimize makespan. A mathematical model for optimal solution is derived. An in-depth analysis of the model shows that it is very complicated and difficult to obtain optimal solutions as the problem size becomes large. Therefore, two meta-heuristics, genetic algorithm (GA) and a new population-based evolutionary meta-heuristic called self-evolution algorithm (SEA), are proposed. The performances of the meta-heuristic algorithms are evaluated through compare with optimal solutions using randomly generated several examples.