Two new predictive design methods are presented in this study. The first is a hybrid method, called neuro-fuzzy, based on neural networks with fuzzy learning. A total of 280 experimental datasets obtained from the literature concerning concentric punching shear tests of reinforced concrete slab-column connections without shear reinforcement were used to test the model (194 for experimentation and 86 for validation) and were endorsed by statistical validation criteria. The punching shear strength predicted by the neuro-fuzzy model was compared with those predicted by current models of punching shear, widely used in the design practice, such as ACI 318-08, SIA262 and CBA93. The neuro-fuzzy model showed high predictive accuracy of resistance to punching according to all of the relevant codes. A second, more user-friendly design method is presented based on a predictive linear regression model that supports all the geometric and material parameters involved in predicting punching shear. Despite its simplicity, this formulation showed accuracy equivalent to that of the neuro-fuzzy model.
제7차 교육과정의 시행과 더불어 정부와 민간에서 모든 교과의 교수 학습에서 ICT를 활용할 수 있는 디지털 컨텐트를 다양하게 만들어 서비스하고 있으나 일관된 계획이나 표준안이 없이 필요에 따라 자료를 분류하여 만들어지다 보니 단위 수업 시간에 직접 투입하기에는 알맞은 자료를 검색하여 재가공을 하여 활용하거나 여과 없이 사용하게 되는 문제점이 제기되고 있다. 따라서, 본 연구에서는 단위 수업 중 자료투입시기를 분석하여 초등학교 교육환경에 필요한 메타데이터 요소를 탐색하고 메타데이터 요소를 추출하여 국제적인 메타데이터 표준인 DC Core Education 의 메타데이터 표준안을 기반으로 하는 멀티미디어 교육자료 검색 및 활용을 위한 베타데이터 요소를 추가 하였다. 초등교육 현장에서 생성되는 다양한 멀티미디어 교육 자료와 원상에 존재한 양질의 교육 정보 자원들을 일반적인 수업 흐름인 도입, 전개, 정리의 메타데이터 요소를 추가하여 통합검색과 체계적인 인터페이스를 제할 수 있는 기반을 마련함으로써 초등학교 교사가 쉽고 편리하게 단위 수업에 유용한 것을 찾아내고 수업에 투입할 수 있을 것이며 향후 교수학습 자료를 수업에 직접 필요한 형태로 분류하여 제공하여 효율적인 교수 학습 자료를 공유하게 함으로써 ICT활용 수업에 실제적인 도움을 줄 수 있을 것으로 기대된다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2018.10a
/
pp.182-183
/
2018
Big data analysis is the process of discovering a meaningful correlation, pattern, and trends in large data set stored in existing data warehouse management tools and creating new values. In addition, by extracts new value from structured and unstructured data set in big volume means a technology to analyze the results. Most of the methods of Big data analysis technology are data mining, machine learning, natural language processing, pattern recognition, etc. used in existing statistical computer science. Global research institutes have identified Big data as the most notable new technology since 2011.
Journal of Information Science Theory and Practice
/
v.3
no.1
/
pp.6-23
/
2015
This study develops an effective method for sentiment analysis of user-generated content on drug review websites, which has not been investigated extensively compared to other general domains, such as product reviews. A clause-level sentiment analysis algorithm is developed since each sentence can contain multiple clauses discussing multiple aspects of a drug. The method adopts a pure linguistic approach of computing the sentiment orientation (positive, negative, or neutral) of a clause from the prior sentiment scores assigned to words, taking into consideration the grammatical relations and semantic annotation (such as disorder terms) of words in the clause. Experiment results with 2,700 clauses show the effectiveness of the proposed approach, and it performed significantly better than the baseline approaches using a machine learning approach. Various challenging issues were identified and discussed through error analysis. The application of the proposed sentiment analysis approach will be useful not only for patients, but also for drug makers and clinicians to obtain valuable summaries of public opinion. Since sentiment analysis is domain specific, domain knowledge in drug reviews is incorporated into the sentiment analysis algorithm to provide more accurate analysis. In particular, MetaMap is used to map various health and medical terms (such as disease and drug names) to semantic types in the Unified Medical Language System (UMLS) Semantic Network.
This study aims to investigate effects of scaffolding on writing apprehension and media literacy in engineering freshmen's synchronous online writing course, and the relationships between the two variables. 'Scaffolding' is in-time support provided by a teacher/tutor or competent peer that enables students to meaningfully gain skills at problem solving process. Also, it is one of the most frequently mentioned concepts in education as well as one of the more necessary teaching strategies in an online writing course. In this study, provided treatments for the experiment were supportive scaffolding for domain-specific knowledge and reflective scaffolding for meta-cognitive knowledge. Participants were 102 engineering undergraduate students, who were assigned to two experimental groups by scaffolding types. A process-based writing course in online learning environment was conducted for 8 weeks. The writing tasks were given according to writing process. The findings were that, firstly, there were statistically significant writing apprehension's reduction and self-expression's improvement through the scaffolding provided in writing class. Secondly, writing apprehension's reduction and self-expression's improvement were significant in supportive scaffolding group. Thirdly, media literacy predicted writing apprehension. The practical implications of these findings are discussed herein, with particular attention on ways for writing apprehension's reduction as well as media literacy's enhancement.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.07a
/
pp.587-590
/
2020
최근, 디지털 콘텐츠 산업이 폭발적으로 성장됨에 따라 고객 유치를 위한 개인화 추천 기술들이 많은 주목을 받고 있다. 개인화 추천 방식들을 큰 갈래로 나누어 본다면 협업 필터링 기술과 내용 기반 기술로 나눌 수 있다. 협업 필터링의 경우 개인화 추천에는 적합하지만 사용자 평가 데이터의 양이 방대해야 하며 초기에 평가자가 없는 콘텐츠에 대해 추천할 수 없는 초기 평가자 문제가 존재한다. 따라서 매일 방대한 양의 콘텐츠가 편입되는 분야에서 사용하기에 큰 결점이 될 수 있다. 본 논문에서는 영화들의 정보가 담긴 데이터 셋과 사용자 평가 데이터, 그리고 사용자의 선호 기준을 의미하는 메타 가중치를 활용한 내용 기반의 맞춤형 영화 추천 시스템을 제안한다. 논문에서는 먼저, 영화를 고를 때 일반적으로 중요시 보는 속성들을 활용하여 영화의 특징 벡터를 구성하고, 이를 사용자 평가와 결합하여 개인의 선호에 대한 특징 벡터를 구성하는 방법을 제안하며, 구성된 데이터와 코사인 유사도, 메타 가중치를 활용하여 사용자 선호와 유사한 영화들을 도출하는 방법을 제안한다. 또한, 평가데이터를 활용하여 구현된 추천시스템의 검증 프로세스를 구성하고, 검증 프로세스를 활용한 손실 함수를 설계하여 적합한 메타 가중치를 학습하는 방법을 제시한다. 본 논문에서 제안하는 시스템은 다수의 속성을 조합하여 활용하므로 추천 결과가 과도하게 특수화 되지 않을 수 있으며, 메타 가중치라는 요소를 통해 더욱 개인화 된 추천을 제공할 수 있다.
Journal of Information Technology Applications and Management
/
v.30
no.4
/
pp.29-38
/
2023
A single-learner model which integrates the user's positive and negative perceptions is proposed by augmenting counterfactual data to the interaction data between users and items, which are mainly used in collaborative filtering in this study. The proposed CausRec showed superior performance compared to the existing NCF model in terms of F1 value and AUC in experiments using three published datasets: MovieLens 100K, Amazon Gift Card, and Amazon Magazine. Compared to the existing NCF model, the F1 and AUC values of CausRec showed 1.2% and 2.6% performance improvement in MovieLens 100K data, and 2.2% and 10% improvement in Amazon Gift Card data, respectively. In particular, in experiments using Amazon Magazine data, F1 and AUC values were improved by 11.7% and 21.9%, respectively, showing a significant performance improvement effect. The performance of CausRec is improved because both positive and negative perceptions of the item were reflected in the recommendation at the same time. It is judged that the proposed method was able to improve the performance of the collaborative filtering because it can simultaneously alleviate the sparsity and imbalance problems of the interaction data.
International journal of advanced smart convergence
/
v.13
no.2
/
pp.205-213
/
2024
This study uses a large language model (LLM) to identify Aristotle's rhetorical principles (ethos, pathos, and logos) in COVID-19 information on Naver Knowledge-iN, South Korea's leading question-and-answer community. The research analyzed the differences of these rhetorical elements in the most upvoted answers with random answers. A total of 193 answer pairs were randomly selected, with 135 pairs for training and 58 for testing. These answers were then coded in line with the rhetorical principles to refine GPT 3.5-based models. The models achieved F1 scores of .88 (ethos), .81 (pathos), and .69 (logos). Subsequent analysis of 128 new answer pairs revealed that logos, particularly factual information and logical reasoning, was more frequently used in the most upvoted answers than the random answers, whereas there were no differences in ethos and pathos between the answer groups. The results suggest that health information consumers value information including logos while ethos and pathos were not associated with consumers' preference for health information. By utilizing an LLM for the analysis of persuasive content, which has been typically conducted manually with much labor and time, this study not only demonstrates the feasibility of using an LLM for latent content but also contributes to expanding the horizon in the field of AI text extraction.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.18
no.8
/
pp.2157-2177
/
2024
Demand response (DR) refers to the customers' active reaction with respect to the changes of market pricing or incentive policies. DR plays an important role in improving network reliability, minimizing operational cost and increasing end users' benefits. Hence, the integration of DR in the microgrid (MG) management is gaining increasing popularity nowadays. This paper proposes a day-ahead MG scheduling framework in conjunction with DR and investigates the impact of DR in optimizing load profile and reducing overall power generation costs. A linear responsive model considering time of use (TOU) price and incentive is developed to model the active reaction of customers' consumption behaviors. Thereafter, a novel multi-swarm sine cosine algorithm (MSCA) is proposed to optimize the total power generation costs in the framework. In the proposed MSCA, several sub-swarms search for better solutions simultaneously which is beneficial for improving the population diversity. A cooperative learning scheme is developed to realize knowledge dissemination in the population and a competitive substitution strategy is proposed to prevent local optima stagnation. The simulation results obtained by the proposed MSCA are compared with other meta-heuristic algorithms to show its effectiveness in reducing overall generation costs. The outcomes with and without DR suggest that the DR program can effectively reduce the total generation costs and improve the stability of the MG network.
Sulfur dioxide (SO2) is primarily released through industrial, residential, and transportation activities, and creates secondary air pollutants through chemical reactions in the atmosphere. Long-term exposure to SO2 can result in a negative effect on the human body causing respiratory or cardiovascular disease, which makes the effective and continuous monitoring of SO2 crucial. In South Korea, SO2 monitoring at ground stations has been performed, but this does not provide spatially continuous information of SO2 concentrations. Thus, this research estimated spatially continuous ground-level SO2 concentrations at 1 km resolution over South Korea through the synergistic use of satellite data and numerical models. A stacking ensemble approach, fusing multiple machine learning algorithms at two levels (i.e., base and meta), was adopted for ground-level SO2 estimation using data from January 2015 to April 2019. Random forest and extreme gradient boosting were used as based models and multiple linear regression was adopted for the meta-model. The cross-validation results showed that the meta-model produced the improved performance by 25% compared to the base models, resulting in the correlation coefficient of 0.48 and root-mean-square-error of 0.0032 ppm. In addition, the temporal transferability of the approach was evaluated for one-year data which were not used in the model development. The spatial distribution of ground-level SO2 concentrations based on the proposed model agreed with the general seasonality of SO2 and the temporal patterns of emission sources.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.