• Title/Summary/Keyword: Mesoporous shell

Search Result 23, Processing Time 0.026 seconds

Synthesis of Double Mesoporous Silica Nanoparticles and Control of Their Pore Size (이중 다공성 실리카 나노입자 합성 및 공극 크기 조절)

  • Park, Dae Keun;Ahn, Jung Hwan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.167-169
    • /
    • 2021
  • In this study, monodispersive silica nanoparticles with double mesoporous shells were synthesized, and the pore size of synthetic mesoporous silica nanoparticles was controlled. Cetyltrimethylammonium chloride (CTAC), N, N-dimethylbenzene, and decane were used as soft template and induced to form outer mesoporous shell. The resultant double mesoporous silica nanoparticles were consisted of two layers of shells having different pore sizes, and it has been confirmed that outer shells with larger pores (Mean pore size > 2.5 nm) are formed directly on the surface of the smaller pore sized shell (Mean pore size < 2.5 nm). It was confirmed that the regulation of the molar ratio of pore expansion agents plays a key role in determining the pore size of double mesoporous shells.

One-pot Synthesis of Multifunctional Mn3O4/mesoporous Silica Core/shell Nanoparticles for Biomedical Applications

  • Lee, Dong Jun;Lee, Nohyun;Lee, Ji Eun
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.113-118
    • /
    • 2022
  • Multifunctional nanomaterials based on mesoporous silica nanoparticles (MSN) and metal oxide nanocrystals are among the most promising materials for theragnosis because of their ease of modification and high biocompatibility. However, the preparation of multifunctional nanoparticles requires time-consuming multistep processes. Herein, we report a simple one-pot synthesis of multifunctional Mn3O4/mesoporous silica core/shell nanoparticles (Mn3O4@mSiO2) involving the temporal separation of core formation and shell growth. This simple procedure greatly reduces the time and effort required to prepare multifunctional nanoparticles. Despite the simplicity of the process, the properties of nanoparticles are not markedly different from those of core/shell nanoparticles synthesized by a previously reported multistep process. The Mn3O4@mSiO2 nanoparticles are biocompatible and have potential for use in optical imaging and magnetic resonance imaging.

Titanium Containing Solid Core Mesoporous Silica Shell: A Novel Efficient Catalyst for Ammoxidation Reactions

  • Venkatathri, N.;Nookaraju, M.;Rajini, A.;Reddy, I.A.K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.143-148
    • /
    • 2013
  • Novel titanium containing solid core mesoporous shell silica has been synthesized by using octadecyltrichloro silane and triethylamine. The synthesized material was characterized by various physicochemical techniques. The mesoporous character of the material has been revealed from PXRD studies. The presence of octadecyltrichloro silane and triethylamine in the sample has been confirmed from EDAX studies. TG/DTA analysis reveals the thermal characteristics of the synthesized material. The presence of titanium in the frame work and its coordination state has been studies by UV-vis DR studies and XPS analysis. Chemical environment of Si in the framework of the material has been studied by $^{29}SiMASNMR$ studies. The surface area of the material is found to be around $550\;m^2g^{-1}$ and pore radius is of nano range from BET analysis. The spherical morphology and particle size of the core as well as shell has been found to be 300 nm and 50 nm respectively from TEM analysis. The catalytic application of this material towards the synthesis of caprolactam from cyclohexanone in presence of hydrogen peroxide through ammoxidation reaction has been investigated. The optimum conditions for the reaction have been established. The plausible mechanism for the formation of core silica and conversion of cyclohexanone has been proposed.

메조기공 유기실리케이트 제조에 대한 템플레이트의 영향

  • 차국헌;조은범;김상철;조휘랑
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.49-49
    • /
    • 2002
  • A strategy for the synthesis of more stable and large periodic mesoporous organo-silica materials has been developed for the 2D hexagonal mesoporous organosilica by the core-shell approach using nonionic PEO-PLGA-PEO triblock copolymer templates. The BET surface area of the solvent-extracted hexagonal mesoporous organosilica is estimated to be 1,016 ㎡/g and the pore volume, pore diameter, and wall thickness are 1.447 ㎤/g, 65 Å, and 43 Å, respectively. More hydrophobic PLGA block than the PPO block used for templates of mesoporous silica proves to be quite effective in confining the organosilicates within the PEO phase. Reaction temperature and acid concentration of an initial solution as well as the chemical nature of the bloc k copolymer templates also demonstrate to be important experimental parameters for ordered organosilica mesophase. Moreover, the mesoporous organosilicas prepared with the PEO-PLGA-PEO block templates maintain their structural integrity for up to 25 days in boiling water at 100℃. The mesoporous materials with large pores and high hydrothermal stability prepared in this study has a potential for many applications.

  • PDF

Fabrication of Mesoporous Hollow TiO2 Microcapsules for Application as a DNA Separator

  • Jeon, Sang Gweon;Yang, Jin Young;Park, Keun Woo;Kim, Geon-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3583-3589
    • /
    • 2014
  • This study evaluated a simple and useful route to the synthesis of mesoporous $TiO_2$ microcapsules with a hollow macro-core structure. A hydrophilic precursor sol containing the surfactants in the hydrophobic solvents was deposited on PMMA polymer surfaces modified by non-thermal plasma to produce mesoporous shells after calcination. The surface of the PMMA polymer spheres was coated with $NH_4F$ and CTAB to control the interfacial properties and promote the subsequent deposition of inorganic sols. These hollow type mesoporous $TiO_2$ microcapsules could be applied as an efficient substrate for the immobilization of DNA oligonucleotides.

Synthesis of Core-Shell Silica Nanoparticles with Hierarchically Bimodal Pore Structures

  • Yun, Seok-Bon;Park, Dae-Geun;Yun, Wan-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.467-467
    • /
    • 2011
  • Reflecting the growing importance of nanomaterials in science and technology, controlling the porosity combined with well-defined structural properties has been an ever-demanding pursuit in the related fields of frontier researches. A number of reports have focused on the synthesis of various nanoporous materials so far and, recently, the nanomaterials with multimodal porosity are getting an emerging importance due to their improved material properties compared with the mono porous materials. However, most of those materials are obtained in bulk phases while the spherical nanoparticles are one of the most practical platforms in a great number of applications. Here, we report on the synthesis of the core-shell silica nanoparticles with double mesoporous shells (DMSs). The DMS nsnoparticles are spherical and monodispersive and have two different mesoporous shells, i.e., the bimodal porosity. It is the first example of the core-shell silica nanoparticles with the different mesopores coexisting in the individual nanoparticles. Furthermore, the carbon and silica hollow capsules were also fabricated via a serial replication process.

  • PDF

Porous Silica Particles As Chromatographic Separation Media: A Review

  • Cheong, Won Jo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3465-3474
    • /
    • 2014
  • Porous silica particles are the most prevailing raw material for stationary phases of liquid chromatography. During a long period of time, various methodologies for production of porous silica particles have been proposed, such as crashing and sieving of xerogel, traditional dry or wet process preparation of conventional spherical particles, preparation of hierarchical mesoporous particles by template-mediated pore formation, repeated formation of a thin layer of porous silica upon nonporous silica core (core-shell particles), and formation of specific silica monolith followed by grinding and calcination. Recent developments and applications of useful porous silica particles will be covered in this review. Discussion on sub-$3{\mu}m$ silica particles including nonporous silica particles, carbon or metal oxide clad silica particles, and molecularly imprinted silica particles, will also be included. Next, the individual preparation methods and their feasibilities will be collectively and critically compared and evaluated, being followed by conclusive remarks and future perspectives.

Confined Pt and CoFe2O4 Nanoparticles in a Mesoporous Core/Shell Silica Microsphere and Their Catalytic Activity

  • Kang, Dong-Hyeon;Eum, Min-Sik;Lee, Byeong-No;Bae, Tae-Sung;Lee, Kyu-Reon;Lim, Heung-Bin;Hur, Nam-Hwi
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3712-3719
    • /
    • 2011
  • Confined Pt and $CoFe_2O_4$ nanoparticles (NPs) in a mesoporous core/shell silica microsphere, Pt-$CoFe_2O_4$@meso-$SiO_2$, were prepared using a bi-functional linker molecule. A large number of Pt NPs in Pt-$CoFe_2O_4$@meso-$SiO_2$, ranging from 5 to 8 nm, are embedded into the shell and some of them are in close contact with $CoFe_2O_4$ NPs. The hydrogenation of cyclohexene over the Pt-$CoFe_2O_4$@meso-$SiO_2$ microsphere at $25^{\circ}C$ and 1 atm of $H_2$ yields cyclohexane as a major product. In addition, it gives oxygenated products. Control experiments with $^{18}O$-labelled water and acetone suggest that surface-bound oxygen atoms in $CoFe_2O_4$ are associated with the formation of the oxygenated products. This oxidation reaction is operative only if $CoFe_2O_4$ and Pt NPs are in close contact. The Pt-$CoFe_2O_4$@meso-$SiO_2$ catalyst is separated simply by a magnet, which can be re-used without affecting the catalytic efficiency.