• 제목/요약/키워드: Mesoporous materials

검색결과 187건 처리시간 0.024초

Electromagnetic Interference Shielding Properties of CO2 Activated Carbon Black Filled Polymer Coating Materials

  • Hu, Quanli;Kim, Myung-Soo
    • Carbon letters
    • /
    • 제9권4호
    • /
    • pp.298-302
    • /
    • 2008
  • Carbon blacks could be used as the filler for the electromagnetic interference (EMI) shielding. The poly vinyl alcohol (PVA) and polyvinylidene fluoride (PVDF) were used as the matrix for the carbon black fillers. Porous carbon blacks were prepared by $CO_2$ activation. The activation was performed by treating the carbon blacks in $CO_2$ to different degrees of burnoff. During the activation, the enlargement of pore diameters, and development of microporous and mesoporous structures were introduced in the carbon blacks, resulting in an increase of extremely large specific surface areas. The porosity of carbon blacks was an increasing function of the degree of burn-off. The surface area increased from $80\;m^2/g$ to $1142\;m^2/g$ and the total pore volume increased from $0.14073\;cc{\cdot}g^{-1}$ to $0.9343\;cc{\cdot}g^{-1}$. Also, the C=O functional group characterized by aldehydes, ketones, carboxylic acids and esters was enhanced during the activation process. The EMI shielding effectiveness (SE) of raw N330 carbon blacks filled with PVA was about 1 dB and those of the activated carbon blacks increased to the values between 6 and 9 dB. The EMI SE of raw N330 carbon blacks filled with PVDF was about 7 dB and the EMI SE increased to the range from 11 to 15 dB by the activation.

Catalytic Properties of Ti-HMS with High Titanium Loadings

  • Jang, S.H.;Kim, M.J.;Ko, J.R.;Ahn, W.S.
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권8호
    • /
    • pp.1214-1218
    • /
    • 2005
  • Ti-HMS samples in which titanium species exist in various forms of isolated tetrahedral state, finely dispersed $TiO_2$ cluster, and some in extra-framework anatase phase were prepared via a direct synthesis route using dodecylamine (DDS) as a structure directing agent by systematically varying the titanium loadings between 2 and 50 mol% Ti/(Ti+Si) in substrate composition. Physicochemical properties of the materials were evaluated using XRD, SEM/TEM, N2 adsorption, UV-vis and XANES spectroscopies. Catalytic properties of Ti-HMS in cyclohexene and 2,6-di-tert-butyl phenol (2,6-DTBP) oxidation using aqueous $H_2O_2$, and vapor phase photocatalytic degradation of acetaldehyde were evaluated. High $H_2O_2$ selectivity was obtained in cyclohexene oxidation, and cyclohexene conversion was found primarily dependent on the amount of tetrahedrally coordinated Ti sites. For bulky 2,6-DTBP oxidation and photocatalytic oxidation of acetaldehyde, on the other hand, conversions were found dependent on the total amount of Ti sites and maintaining an uniform mesoporous structure in the catalysts was not critical for efficient catalysis.

Synthesis and Spectroscopic Characterization of Vanadium incorporated V-AlMCM-41 Molecular Sieves

  • Back, Gern-Ho;Yu, Jong-Sung;Lee, Hye-Young;Lee, Yong-Ill
    • 한국자기공명학회논문지
    • /
    • 제10권2호
    • /
    • pp.141-154
    • /
    • 2006
  • A solid-state reaction of $V_2O_5$ with AlMCM-41 followed by calcinations generated $V^{5+}$ species in the mesoporous materials. Dehydration results in the formation of a vanadyl species, $VO^{2+}$, that can be characterized by electron spin resonance (ESR). The chemical environment of the vanadium centers in V-AlMCM-41 was investigated by XRD, EDX, diffuse reflectance UV-VIS, ESR, $^{29}Si,\;^{27}Al,\;and\;^{51}V$ NMR. It was found that the vanadium species on the wall surface and inside the wall of the hexagonal tubular wall of the V-AlMCM-41 were completely oxidized to tetrahedral $V^{5+}$ and transformed to square pyramidal by additional coordination to water molecules upon hydration. The oxidized $V^{5+}$ species on the wall surfaces and inside the wall were also reversibly reduced to $VO^{2+}$ species or lower valences by thermal process.

  • PDF

메조포러스 이산화티타늄 박막 기반 양자점-감응 태양전지 (Quantum Dot-Sensitized Solar Cells Based on Mesoporous TiO2 Thin Films)

  • 이효중
    • 전기화학회지
    • /
    • 제18권1호
    • /
    • pp.38-44
    • /
    • 2015
  • 본 총설은 다공성의 메조포러스 이산화티타늄 박막을 기반으로 하는 양자점-감응 태양 전지의 최근 발전 과정에 대해 정리하였다. 나노스케일의 무기물 양자점이 가지는 본질적 특성에 기반하고 다양한 양자점 구성 물질을 이용하여, 용액-공정 기반의 다양한 3세대 박막 태양전지를 만들 수 있었다. 양자점 감응제는 준비하는 방법에 따라 크게 2가지로 나눌 수 있는데, 첫 번째는 콜로이드 형태로 용액상에서 준비한 다음 $TiO_2$ 표면에 붙이는 것이고 두 번째는 양자점 전구체가 녹아있는 화학조를 이용하여 직접 $TiO_2$ 표면에 성장시키는 것이다. 폴리썰파이드 전해질을 사용하여, 콜로이드 양자점 감응제의 경우는 최근 들어 정밀한 조성 조절을 통하여 전체 광전 변환효율이 ~7%에 이르렀고 화학조 침전법을 이용하여 준비된 대표적 감응제인 CdS/CdSe는 ~5%의 효율을 보이고 있다. 앞으로는 지금까지 보고된 양자점 감응제의 뛰어난 광전류 생성 능력을 유지하면서, 새로운 정공 전달체의 개발 및 계면 조절을 통한 개방 전압과 채움 상수의 개선을 통한 효율 증가 및 안정성에 관한 체계적 연구가 필요한 상황이다.

Evaluation of Toxicity and Gene Expression Changes Triggered by Oxide Nanoparticles

  • Dua, Pooja;Chaudhari, Kiran N.;Lee, Chang-Han;Chaudhari, Nitin K.;Hong, Sun-Woo;Yu, Jong-Sung;Kim, So-Youn;Lee, Dong-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권6호
    • /
    • pp.2051-2057
    • /
    • 2011
  • Several studies have demonstrated that nanoparticles (NPs) have toxic effects on cultured cell lines, yet there are no clear data describing the overall molecular changes induced by NPs currently in use for human applications. In this study, the in vitro cytotoxicity of three oxide NPs of around 100 nm size, namely, mesoporous silica (MCM-41), iron oxide ($Fe_2O_3$-NPs), and zinc oxide (ZnO-NPs), was evaluated in the human embryonic kidney cell line HEK293. Cell viability assays demonstrated that 100 ${\mu}g/mL$ MCM-41, 100 ${\mu}g/mL$ $Fe_2O_3$, and 12.5 ${\mu}g/mL$ ZnO exhibited 20% reductions in HEK293 cell viability in 24 hrs. DNA microarray analysis was performed on cells treated with these oxide NPs and further validated by real time PCR to understand cytotoxic changes occurring at the molecular level. Microarray analysis of NP-treated cells identified a number of up- and down-regulated genes that were found to be associated with inflammation, stress, and the cell death and defense response. At both the cellular and molecular levels, the toxicity was observed in the following order: ZnO-NPs > $Fe_2O_3$-NPs > MCM-41. In conclusion, our study provides important information regarding the toxicity of these three commonly used oxide NPs, which should be useful in future biomedical applications of these nanoparticles.

Ultrathin Titania Coating for High-temperature Stable $SiO_2$/Pt Nanocatalysts

  • Reddy, A. Satyanarayana;Kim, S.;Jeong, H.Y.;Jin, S.;Qadir, K.;Jung, K.;Jung, C.H.;Yun, J.Y.;Cheon, J.Y.;Joo, S.H.;Terasaki, O.;Park, Jeong-Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.217-217
    • /
    • 2011
  • Recently, demand for thermally stable metal nanoparticles suitable for chemical reactions at high temperatures has increased to the point to require a solution to nanoparticle coalescence. Thermal stability of metal nanoparticles can be achieved by adopting core-shell models and encapsulating supported metal nanoparticles with mesoporous oxides [1,2]. However, to understand the role of metal-support interactions on catalytic activity and for surface analysis of complex structures, we developed a novel catalyst design by coating an ultra-thin layer of titania on Pt supported silica ($SiO_2/Pt@TiO_2$). This structure provides higher metal dispersion (~52% Pt/silica), high thermal stability (~600$^{\circ}C$) and maximization of the interaction between Pt and titania. The high thermal stability of $SiO_2/Pt@TiO_2$ enabled the investigation of CO oxidation studies at high temperatures, including ignition behavior, which is otherwise not possible on bare Pt nanoparticles due to sintering [3]. It was found that this hybrid catalyst exhibited a lower activation energy for CO oxidation because of the metal-support interaction. The concept of an ultra-thin active metal oxide coating on supported nanoparticles opens-up new avenues for synthesis of various hybrid nanocatalysts with combinations of different metals and oxides to investigate important model reactions at high-temperatures and in industrial reactions.

  • PDF

La 이온이 도핑된 Ti-SBA-15의 합성 및 메틸렌블루의 광촉매 분해 반응 (Synthesis of Ti-SBA-15 Doped with Lanthanide Ion and Photocatalytic Decomposition of Methylene Blue)

  • 정원영;홍성수
    • 공업화학
    • /
    • 제21권3호
    • /
    • pp.323-327
    • /
    • 2010
  • La 이온이 도핑된 Ti-SBA-15 촉매를 수열합성법으로 제조하였고, 이들의 특성을 XRD, FT-IR, DRS, $NH_3$-TPD 및 PL 등을 이용하여 조사하였다. 또한, 이 촉매를 사용하여 메틸렌블루에 대한 광분해 반응성을 조사하였다. La 이온이 도핑되더라도 Ti-SBA-15 촉매는 메조동공체 구조를 유지하고 있으며, $500^{\circ}C$에서 6 h 동안 소성 한 것이 가장 결정성이 좋았다. La 이온의 치환량이 증가함에 따라 기공의 크기와 기공의 부피가 줄어들었으며 표면적은 오히려 증가하였다. 메틸렌블루의 광분해 반응에서 1%의 La 이온을 첨가 시킨 것이 가장 높은 광촉매 활성을 보여주었으며, 도핑량이 5% 이상이 되면 순수한 Ti-SBA-15 촉매보다 오히려 활성이 떨어진 것을 볼 수 있다.

하이퍼써미아 응용을 위한 하이브리드 에어로젤 내 분산된 마그네타이트 나노입자 (Magnetite Nanoparticles Dispersed in Hybrid Aerogel for Hyperthermia Application)

  • 이은희;좌용호;김창열
    • 한국재료학회지
    • /
    • 제22권7호
    • /
    • pp.362-367
    • /
    • 2012
  • Magnetite nanoparticles(NPs) have been the subject of much interest by researchers owing to their potential use as magnetic carriers in drug targeting and as a tumor treatment in cases of hyperthermia. However, magnetite nanoparticles with 10 nm in diameter easily aggregate and thus create large secondary particles. To disperse magnetite nanoparticles, this study proposes the infiltration of magnetite nanoparticles into hybrid silica aerogels. The feasible dispersion of magnetite is necessary to target tumor cells and to treat hyperthermia. Magnetite NPs have been synthesized by coprecipitation, hydrothermal and thermal decomposition methods. In particular, monodisperse magnetite NPs are known to be produced by the thermal decomposition of iron oleate. In this study, we thermally decomposed iron acetylacetonate in the presence of oleic acid, oleylamine and 1,2 hexadecanediol. We also attempted to disperse magnetite NPs within a mesoporous aerogels. Methyltriethoxysilicate(MTEOS)-based hybrid silica aerogels were synthesized by a supercritical drying method. To incorporate the magnetite nanoparticles into the hybrid aerogels, we devised two methods: adding the synthesized aerogel into a magnetite precursor solution followed by nucleation and crystal growth within the pores of the aerogels, and the infiltration of magnetite nanoparticles synthesized beforehand into aerogel matrices by immersing the aerogels in a magnetite nanoparticle colloid solution. An analysis using a vibrating sample magnetometer showed that approximately 20% of the magnetite nanoparticles were well dispersed in the aerogels. The composite samples showed that heating under an inductive magnetic field to a temperature of $45^{\circ}C$ is possible.

저온 티타늄 겔을 이용한 플렉시블 염료감응형 태양전지 (Flexible Dye-sensitized Solar Cell Using Titanium Gel at Low Temperature)

  • 지승환;박현수;김도연;한도형;윤혜원;김우병
    • 한국재료학회지
    • /
    • 제29권3호
    • /
    • pp.183-188
    • /
    • 2019
  • Flexible dye-sensitized solar cells using binder free $TiO_2$ paste for low temperature sintering are developed. In this paste a small amount of titanium gel is added to a paste of $TiO_2$ nanoparticle. Analysis of titanium gel paste prepared at $150^{\circ}C$ shows that it has a pure anatase phase in XRD and mesoporous structure in SEM. The formation of the titanium gel 1-2 nm coated layer is confirmed by comparing the TEM image analysis of the titanium gel paste and the pristine paste. This coating layer improves the excited electron transfer and electrical contact between particles. The J-V curves of the organic binder DSSCs fabricated at $150^{\circ}C$ shows a current density of $0.12mA/cm^2$ and an open-circuit voltage of 0.47 V, while the titanium gel DSSCs improves electrical characteristics to $5.04mA/cm^2$ and 0.74 V. As a result, the photoelectric conversion efficiency of the organic binder DSSC prepared at low temperature is as low as 0.02 %, but the titanium gel paste DSSCs has a measured effciency of 2.76 %.

Optimal Porous Structure of MnO2/C Composites for Supercapacitors

  • Iwamura, Shinichiroh;Umezu, Ryotaro;Onishi, Kenta;Mukai, Shin R.
    • 한국재료학회지
    • /
    • 제31권3호
    • /
    • pp.115-121
    • /
    • 2021
  • MnO2 can be potentially utilized as an electrode material for redox capacitors. The deposition of MnO2 with poor electrical conductivity onto porous carbons supplies them with additional conductive paths; as a result, the capacitance of the electrical double layer formed on the porous carbon surface can be utilized together with the redox capacitance of MnO2. However, the obtained composites are not generally suitable for industrial production because they require the use of expensive porous carbons and/or inefficient fabrication methods. Thus, to develop an effective preparation procedure of the composite, a suitable structure of porous carbons must be determined. In this study, MnO2/C composites have been prepared from activated carbon gels with various pore sizes, and their electrical properties are investigated via cyclic voltammetry. In particular, mesoporous carbons with a pore size of around 20 nm form a composite with a relatively low capacitance (98 F/g-composite) and poor rate performance despite the moderate redox capacitance obtained for MnO2 (313 F/g-MnO2). On the other hand, using macro-porous carbons with a pore size of around 60 nm increases the MnO2 redox capacitance (399 F/g-MnO2) as well as the capacitance and rate performance of the entire material (203 F/g-composite). The obtained results can be used in the industrial manufacturing of MnO2/C composites for supercapacitor electrodes from the commercially available porous carbons.