• Title/Summary/Keyword: Mesophilic sludge

Search Result 46, Processing Time 0.024 seconds

Waste Activated Sludge for Start-up Seed of Thermophilic Anaerobic Digestion (고온 혐기성 소화공정의 start-up seed로서의 호기성 폐 활성슬러지 이용가능성 연구)

  • Kim, Moonil;Shin, Kyuchul
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.5
    • /
    • pp.490-495
    • /
    • 2005
  • Since there are very limited numbers of thermophilic anaerobic digesters being operated, it is often difficult to start up a new one using sludge from an existing reactor as a seed. However, for obvious reasons it seems few attempts have been made to compare the start-up performance of thermophilic anaerobic digestion using different sources of seed sludges. The purpose of this study was to evaluate the start-up performance of anaerobic digestion using aerobic Waste Activated Sludge (WAS) from a plant and mesophilic Anaerobic Digested Sludge (ADS) as the seed source at both mesophilic ($35^{\circ}C$) and thermophilic ($55^{\circ}C$) temperatures. In this study, two experiments were conducted. First, thermophilic anaerobic reactors were seeded with WAS (VSS = 4,400 mg/L) and ADS (VSS = 14,500 mg/L) to investigate start-up performance with a feed of acetate as well as propionate. The results show that WAS started to produce $CH_4$ soon after acetate feeding without a lag time, while ADS had a lag time of 10 days. When the feed was changed to propionate, WAS removed propionate down to below the detection limit of 10 mg/L, while ADS removed little propionate and produced little $CH_4$. Second, in order to further compare the methanogenic activity of WAS and ADS, both mesophilic and thermophilic reactors were operated. WAS acclimated to anaerobic conditions shortly and after acclimating it produced more $CH_4$ than ADS. WAS at mesophilic temperature biodegraded acetate at the same rate as for thermophilic. However WAS at mesophilic temperature biodegraded propionate at a much faster rate than at thermophilic. WAS as the seed source of anaerobic digestion resulted in much better performance than ADS at both mesophilic and thermophilic temperatures for both acetate and propionate metabolism.

In situ Analysis of Methanogenic Bacteria in the Anaerobic Mesophilic and Thermophilic Sludge Digestion (중온 및 고온 혐기성 소화에서 메탄생성균 군집 분석에 관한 연구)

  • Hwang, Sun-Jin;Jang, Hyun-Sup;Eom, Hyoung-Choon;Jang, Kwang-Un
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.4
    • /
    • pp.515-521
    • /
    • 2004
  • Anaerobic digestion has many advantages over the more conventional aerobic treatment processes such as low levels of excess sludge production, low space (area) requirements, and the production of valuable biogas. The purpose of this study was to evaluate the effect of organic loading rate of anaerobic digestion on thermophilic($55^{\circ}C$) and mesophilic($35^{\circ}C$) conditions. Fluorescent in situ hybridization (FISH) method was also used to study the microbial community in the reactors. The stabilizing time in mesophilic anaerobic reactors was shorter as approximately 20 days than 40 days in the thermophilic anaerobic reactors. The amount of methane production rate in anaerobic reactors was independent of the concentrations of supplied substrates and the amount of methanogens. When the microbial diversity in the mesophilic and thermophilic reactors, which had been treated with acetate-based artificial wastewater, were compared, it was found that methanogenesis was carried out by microbial consortia consisting of bacteria and archaea such as methanogens. To investigate the activity of bacterial and archaeal populations in all anaerobic reactors, the amount of acetate was measured. Archaea were predominant in all reactors. Interestingly, Methanothrix-like methanogens appeared in mesophilic anaerobic reactors with high feed substrate concentrations, whereas it was not observed in thermophilic anaerobic reactors.

Effects of Microwave Pretreatment on Mesophilic Anaerobic Digestion for Mixture of Primary and Secondary Sludges Compared with Thermal Pretreatment

  • Park, Woon-Ji;Ahn, Johng-Hwa
    • Environmental Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.103-109
    • /
    • 2011
  • This work experimentally determined the effect of thermal and microwave pretreatments on the anaerobic digestion of mixtures of municipal primary and secondary sludges in semi-continuous mesophilic digesters at hydraulic retention times (HRT) of 20, 15, 10, 7, and 5 days. The ratio of soluble chemical oxygen demand (COD) to total COD in thermally pretreated and microwaved sludges at $80^{\circ}C$ was 2.7 and 3.2 times higher than that of raw sludge, respectively. The volatile solids (VS) and COD removal efficiencies in all three digesters fed with raw (control), thermally pretreated (TM), and microwaved (MW) sludges decreased as the HRT was reduced. The highest relative improvement in VS removal compared to the control occurred at the HRT of 5 days in the TM and MW (29 and 41% higher than the control, respectively). At this HRT, improvement in the COD removal efficiencies in the TM and MW compared to the control was 28 and 53%, respectively. Improvements in biogas production compared with the control increased in both the TM and MW as the HRT was reduced to 5 days. The relative improvement in daily biogas production compared to the control from the TM and MW was 33 and 53% higher than the control at the HRT of 5 days, respectively. The results show that microwave pretreatment is more effective than thermal pretreatment in increasing the solubilization degree and mesophilic anaerobic biodegradability of sewage sludge.

Effect of Temperature and Pre-treatment for Elutriated Acidogenic Fermentation of Piggery Waste (돈사폐수의 세정산발효시 온도와 전처리의 영향)

  • Bae, Jin-Yeon;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.34-39
    • /
    • 2005
  • The performance of elutriated acid fermentation with slurry-type piggery waste was investigated, especially to evaluate the effects of temperature and pre-treatment. In the first phase, the acid elutriation reactor with piggery waste after centrifugation operated at both mesophilic and thermophilic conditions to evaluate the effect of temperature. Solubilization yield($gVFAs/gSCOD_{prod.}$) and acidification rate($gVFAs/gSCOD_{prod.}$) in the thermophilic digestion were 0.45 and 0.55, which were higher than those of the mesophilic digestion, 0.25 and 0.45. In addition, the acid elutriation reactor at thermophilic temperature is more effective in removing e-coli. In the second phase, the acid elutriation reactor was fed with piggery waste before centrifugation. With piggery wastes before centrifugation, the solubilization yield and the acidificaton rate were 0.40 and 0.80, respectively, which were higher than the rates using piggery waste after centrifugation at both mesophilic and thermophilic conditions. The higher sludge volume reduction of 80% benefits sludge management. Furthermore, economical advantages can be achieved by removing the pre-treatment process, such as centrifugation. Consequently, the treatment with piggery waste before centrifugation proved to be effective. Also, the optimum temperature condition was estimated at mesophilic or thermophilic conditions, considering solubilization yields and acidification rates, though the system should be heated.

Biogas Resource from Foodwaste Leachate Using UASB(Upflow Anaerobic Sludge Blanket) (UASB를 이용한 음폐수의 Biogas 자원화)

  • Min, Boo-Ki;Lee, Chang-Hyun;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.28-34
    • /
    • 2012
  • In this study, we operated a UASB (upflow anaerobic sludge blanket) reactor by using foodwaste leachate as a raw material with the method of Mesophilic Digestion ($35{\pm}0.5^{\circ}C$) and Thermophilic Digestion ($55{\pm}0.5^{\circ}C$). During 20 days of operating time with the Mesophilic Digestion, the recirculation ratio of effluent was stepwisely changed in every five days. Thermophilic Digestion was carried out at the same condition for Mesophilic Digestion. Results showed that the organic removal efficiency of Mesophilic Digestion was over 90% and the yield of methane production was from 66 up to 70%. The organic removal efficiency of Thermophilic Digestion was over 80% and the yield of methane production was between 62 to 68%. Also, when UASB reactor was operating to over the 3Q effluent recirculation, the experiment could be carried out economically and stably.

Microbial Communities and Diversities in a Full-Scale Mesophilic Anaerobic Digester Treating Sewage Sludge (하수슬러지 처리 실규모 중온 혐기성 소화조 미생물 군집 및 다양성 조사)

  • Minjae Kim;Suin Park;Juyun Lee;Hyebin Lee;Seonmin Kang;Hyokwan Bae;Joonyeob Lee
    • Journal of Environmental Science International
    • /
    • v.31 no.12
    • /
    • pp.1051-1059
    • /
    • 2022
  • This study investigated microbial communities and their diversity in a full-scale mesophilic anaerobic digester treating sewage sludge. Influent sewage sludge and anaerobic digester samples collected from a wastewater treatment plant in Busan were analyzed using high-throughput sequencing. It was found that the microbial community structure and diversity in the anaerobic digester could be affected by inoculation effect with influent sewage sludge. Nevertheless, distinct microbial communities were identified as the dominant microbial communities in the anaerobic digester. Twelve genera were identified as abundant bacterial communities, which included several groups of syntrophic bacteria communities, such as Candidatus Cloacimonas, Cloacimonadaceae W5, Smithella, which are (potential) syntrophic-propionate-oxidizing bacteria and Mesotoga and Thermovigra, which are (potential) syntrophic-acetate-oxidizing bacteria. Lentimicrobium, the most abundant genus in the anaerobic digester, may contribute to the decomposition of carbohydrates and the production of volatile fatty acids during the anaerobic digestion of sewage sludge. Of the methanogens identified, Methanollinea, Candidatus Methanofastidiosum, Methanospirillum, and Methanoculleus were the dominant hydrogenotrophic methanogens, and Methanosaeta was the dominant aceticlastic methanogens. The findings may be used as a reference for developing microbial indicators to evaluate the process stability and process efficiency of the anaerobic digestion of sewage sludge.

Effects of diverse Pre-treatment methods on the sludge digestion and methane production in combined mesophilic anaerobic and thermophilic aerobic sludge digestion process (다양한 전처리에 따른 중온혐기-고온호기 복합 슬러지 처리공정의 슬러지 처리효율 및 메탄 생성량 변화)

  • Ha, Jeong Hyub;Park, Jong Moon;Park, Sang Kyu;Cho, Hyun Uk;Jang, Hyun Min;Choi, Suk Soon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.3
    • /
    • pp.43-52
    • /
    • 2013
  • In this study, various influent sludge pre-treatment methods were adopted to investigate their effects on the sludge digestion and methane production in combined mesophilic anaerobic and thermophilic aerobic sludge digestion process. A lab-scale sewage sludge digestion process was operated during 4 phases using different feed sludge pre-treatment strategies. In phase 1, feed sludge was supplied without any pre-treatment. In contrast, in phases 2, 3 and 4, thermal, thermal-alkaline and long time alkaline treatment (7 days) were applied to influent sludge, respectively. With sludge pre-treatment, TCOD removal was drastically increased from 44% to 76% from phases 1 to 4, respectively. Also, pre-treatment of feed sludge significantly improved the methane production rate of MAD, showing an increment from 101 to 165-256mL/L/day. Meanwhile, TCOD removal and methane production at phase 4 were not increased, compared to those at phase 3. Based on the experimental results, it was concluded that pre-treatment of feed sludge significantly increases the efficiency of sludge digestion and thermal-alkaline method was the most effective method among the pre-treatment methods examined.

Comparative Analysis of Performance and Microbial Characteristics Between High-Solid and Low-Solid Anaerobic Digestion of Sewage Sludge Under Mesophilic Conditions

  • Lu, Qin;Yi, Jing;Yang, Dianhai
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.110-119
    • /
    • 2016
  • High-solid anaerobic digestion of sewage sludge achieves highly efficient volatile solid reduction, and production of volatile fatty acid (VFA) and methane compared with conventional low-solid anaerobic digestion. In this study, the potential mechanisms of the better performance in high-solid anaerobic digestion of sewage sludge were investigated by using 454 high-throughput pyrosequencing and real-time PCR to analyze the microbial characteristics in sewage sludge fermentation reactors. The results obtained by 454 highthroughput pyrosequencing revealed that the phyla Chloroflexi, Bacteroidetes, and Firmicutes were the dominant functional microorganisms in high-solid and low-solid anaerobic systems. Meanwhile, the real-time PCR assays showed that high-solid anaerobic digestion significantly increased the number of total bacteria, which enhanced the hydrolysis and acidification of sewage sludge. Further study indicated that the number of total archaea (dominated by Methanosarcina) in a high-solid anaerobic fermentation reactor was also higher than that in a low-solid reactor, resulting in higher VFA consumption and methane production. Hence, the increased key bacteria and methanogenic archaea involved in sewage sludge hydrolysis, acidification, and methanogenesis resulted in the better performance of high-solid anaerobic sewage sludge fermentation.

Co-digestion of Thermophilic Acid-fermented Food Wastes and Sewage Sludge (음식물찌꺼기 고온산발효산물과 하수슬러지의 혼합처리)

  • Ahn, Chul-Woo;Jang, Seong-Ho;Park, Jin-Sik
    • Journal of Environmental Science International
    • /
    • v.15 no.9
    • /
    • pp.897-905
    • /
    • 2006
  • This study has been conducted to investigate biodegradation characteristics and optimum mixing ratio for co-digestion with thermophilic acid-fermented food waste and sewage sludge using batch anaerobic digester. As the basis operating conditions for anaerobic digestion, the reaction temperature was controlled $35{\pm}1^{\circ}C$ and stirrer was set 70rpm. Thermophilic acid-fermented food waste and sewage sludge were mixed at the ratio of 10:0, 7:3, 5:5, 3:7, 0:10 and 5;5(food waste : sewage sludge) as the influent substrates. In results of co-digestion according to mixing ratio of thermophilic fermented food wastes and sewage sludge in batch mesophilic anaerobic digestion reactor, $385mL\;CH_4/g\;VS_{added}$ of methane production rate at 1:1 mixing ratio was more than that of any other mixing ratios. Compared with $293mL\;CH_4/g\;VS_{added}$ of methane production rate at 1:1 mixing ratio of food wastes and sewage sludge, pretreatment of food wastes by thermophilic acid fermentation was more effective in co-digestion with sewage sludge.

Kinetics of Anaerobic Digestion : Temperature Effects on Highly Loaded Digesters (혐기성소화(嫌氣性消化)의 동역학(動力學) : 고부하시(高負荷時)의 온도영향(溫度影響))

  • Chang, Duk;Chung, Tai Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.4
    • /
    • pp.59-67
    • /
    • 1988
  • Anaerobic digestion at the temperature of $35-55^{\circ}C$ was conducted using an artificial sludge of uniform composition. The hydraulic retention time of 5 days was chosen because the temperature effect was effectively shown at a high loading. Inhibition of the methane fermentation decreased as the temperature increased. Acid fermentation was prevalent at the mesophilic and intermediate temperatures, while active methane fermentation took place at $55^{\circ}C$. Temperature not only affects activity of the microorganisms, but also affects physical and chemical properties of the sludge, Digestion inhibition was much reduced when the feed sludge was diluted, and active methane fermentation was possible at all temperatures. The digestion efficiency was governed by the organic loading rate as well as the hydraulic 10ading rate. No reduction of the digestion efficiency at $40-45^{\circ}C$, which had been referred to a critical temperature range, was observed. The digestion efficiency increased monotonically from mesophilic to thermophilic range. Improved settling properties of digested sludge was also recorded at higher temperatures.

  • PDF