• Title/Summary/Keyword: Mesoderm formation

Search Result 14, Processing Time 0.018 seconds

Effective Application of Multiplex RT-PCR for Characterization of Human Embryonic Stem Cells/ Induced Pluripotent Stem Cells (다중 역전사 중합효소 연쇄 반응(Multiplex RT-PCR)을 이용한 인간배아 줄기세포 및 유도만능 줄기세포의 효과적인 분화 양상 조사)

  • Kim, Jung-Mo;Cho, Youn-Jeong;Son, On-Ju;Hong, Ki-Sung;Chung, Hyung-Min
    • Reproductive and Developmental Biology
    • /
    • v.35 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • Techniques to evaluate gene expression profiling, such as sufficiently sensitive cDNA microarrays or real-time quantitative PCR, are efficient methods for monitoring human pluripotent stem cell (hESC/iPSC) cultures. However, most of these high-throughput tests have a limited use due to high cost, extended turn-around time, and the involvement of highly specialized technical expertise. Hence, there is an urgency of rapid, cost-effective, robust, yet sensitive method development for routine screening of hESCs/hiPSCs. A critical requirement in hESC/hiPSC cultures is to maintain a uniform undifferentiated state and to determine their differentiation capacity by showing the expression of gene markers representing all three germ layers, including ectoderm, mesoderm, and endoderm. To quantify the modulation of gene expression in hESCs/hiPSC during their propagation, expansion, and differentiation via embryoid body (EB) formation, we developed a simple, rapid, inexpensive, and definitive multimarker, semiquantitative multiplex RT-PCR platform technology. Among the 9 gene primers tested, 5 were pluripotent markers comprising set 1, and 3 lineage-specific markers were combined as set 2, respectively. We found that these 2 sets were not only effective in determining the relative differentiation in hESCs/hiPSCs, but were easily reproducible. In this study, we used the hES/hiPS cell lines to standardize the technique. This multiplex RT-PCR assay is flexible and, by selecting appropriate reporter genes, can be designed for characterization of different hESC/hiPSC lines during routine maintenance and directed differentiation.

PV.1 induced by FGF-Xbra functions as a repressor of neurogenesis in Xenopus embryos

  • Yoon, Jaeho;Kim, Jung-Ho;Lee, Sung-Young;Kim, SungChan;Park, Jae-Bong;Lee, Jae-Yong;Kim, Jaebong
    • BMB Reports
    • /
    • v.47 no.12
    • /
    • pp.673-678
    • /
    • 2014
  • During Xenopus early development, FGF signaling is involved in mesoderm formation and neurogenesis by modulating various signaling cascades. FGF-MAPK signaling induces Xbra expression, which maintains mesodermal fate through an autocatalytic-loop. Interestingly, previous reports have demonstrated that basic FGF (bFGF) treatment alone does not induce neurogenesis in ectodermal explants, even though FGF signaling inhibits BMP signaling via phosphorylation in Smad1 linker region. In addition, the overexpression of dominantnegative Xbra induces neurogenesis in ectodermal explants. However, the detailed mechanism underlying these phenomena has not yet been clarified. In this work, we showed that bFGF-Xbra signaling increased the PV.1 expression. DN-Xbra was found to decrease PV.1 expression, and the co-injection of PV.1 with DN-Xbra reduced neurogenesis in ectodermal explants. Furthermore, the knockdown of PV.1 induced neurogenesis in bFGF-treated ectodermal explants. Taken together, our results demonstrate that FGF-Xbra signaling induces PV.1 expression and that PV.1 functions as a neural repressor in the FGF-treated ectoderm.

Ventx1.1 competes with a transcriptional activator Xcad2 to regulate negatively its own expression

  • Kumar, Shiv;Umair, Zobia;Kumar, Vijay;Lee, Unjoo;Choi, Sun-Cheol;Kim, Jaebong
    • BMB Reports
    • /
    • v.52 no.6
    • /
    • pp.403-408
    • /
    • 2019
  • Dorsoventral patterning of body axis in vertebrate embryo is tightly controlled by a complex regulatory network of transcription factors. Ventx1.1 is known as a transcriptional repressor to inhibit dorsal mesoderm formation and neural differentiation in Xenopus. In an attempt to identify, using chromatin immunoprecipitation (ChIP)-Seq, genome-wide binding pattern of Ventx1.1 in Xenopus gastrulae, we observed that Ventx1.1 associates with its own 5'-flanking sequence. In this study, we present evidence that Ventx1.1 binds a cis-acting Ventx1.1 response element (VRE) in its own promoter, leading to repression of its own transcription. Site-directed mutagenesis of the VRE in the Ventx1.1 promoter significantly abrogated this inhibitory autoregulation of Ventx1.1 transcription. Notably, Ventx1.1 and Xcad2, an activator of Ventx1.1 transcription, competitively co-occupied the VRE in the Ventx1.1 promoter. In support of this, mutation of the VRE down-regulated basal and Xcad2-induced levels of Ventx1.1 promoter activity. In addition, overexpression of Ventx1.1 prevented Xcad2 from binding to the Ventx1.1 promoter, and vice versa. Taken together, these results suggest that Ventx1.1 negatively regulates its own transcription in competition with Xcad2, thereby fine-tuning its own expression levels during dorsoventral patterning of Xenopus early embryo.

GAMETOGENESIS AND EARLY DEVELOPMENT OF LINUPARUS TRIGONUS(VON SIEBOLD) (펄닭새우 생식세포형성과정 및 초기발생)

  • KIM Chang-Hyeon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.10 no.2
    • /
    • pp.71-96
    • /
    • 1977
  • Early development Linuparus trigonus(von Siebold) has been studied based on the samples collected monthly in Je-ju Island, Korea from February, 1975 to January, 1977. Gametogenesis, reproductive cycle, embryonic development were investigated by histological mettled, and morphological description was made on the first phyllosoma larva which reared in the laboratory. Testis is composed of two tubular duct which are symmetrical with H-shaped appearance. Outer layer of testis is of fibrous connective tissue capsule. In the lumen there is a convoluted seminiferous tubule with interstitial tissue. Ovary is a pair of symmetrical blind tubular lobes, and the midportions are connected each other. The ovary consists of a couple of ovarian sacs partitioned by two-layered connective tissue fibers. Proliferation of spermatogonia are observed all the year around on the germinal epithelium of seminiferous tubule. Partial spermatogenesis is always in progress, and the spermatozoa appear all the year around in the tubules. Nutrition of early oogonia is supplied by fibrous mesenchyme which is abundantly distributed in ovarian sacs. Oocytes grow and couplete maturation divisions in the follicle layers. They finally develop into mature ova before spawning. Reproductive cycle is classified into four successive stages; multiplication stage from September to December, growing stage from January to March, maturation division stage from April to May and mature stage from June to August. Spawning takes place from May to August with peak spawning from Into July to early August. Cleavage type is superficial. Blastopore is formed in blasto-disc region which is proliferation of blastoderm cells. Germinal layers are also derived from tile region. Mesoderm formation is originated from endodermal cells which are formed front the blasto-disc region. The endodermal cells are separated by the process of delamination from yolk sac and take part in the formation of the mid-gut. Morphological characteristics of first phyllosoma larva are different from the larvae of other Palinurid and Scyllarid species.

  • PDF