• 제목/요약/키워드: Mesh resolution

검색결과 139건 처리시간 0.029초

Regular Mesh 기반 지리정보 3D 합성모델 (Geographic information 3D Synthetic Model based on Regular Mesh)

  • 정지환;황선명;김성호
    • 한국항행학회논문지
    • /
    • 제15권4호
    • /
    • pp.616-625
    • /
    • 2011
  • 본 연구에서는 지형을 Rendering 기법의 대표적인 방법인 Geometry Clipmaps와 ROAM 2.0을 분석하여 Rendering 연산에 소요되는 연산을 CPU가 아닌 GPU에 중점을 두어 보다 빠르고 넓은 가시화 영역을 보장하는 확장된 Geometry Clipmaps 알고리즘을 제안한다. 확장된 알고리즘은 LOD(Level of Detail)을 통한 각 레벨의 Mesh 구성 방법, 레벨간의 연결망 Mesh 구성 방법, VFC(View Frustum Culling)을 사용하여 Rendering을 최적화 할 수 있는 Mesh Block화 방안 그리고 최대 1m 해상도를 갖는 고해상도 영상 Mapping 방안 등을 포함하고 있다.

Generation of Fixed Spectral Basis for Three-Dimensional Mesh Coding Using Dual Graph

  • Kim Sung-Yeol;Yoon Seung-Uk;Ho Yo-Sung
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 ICEIC The International Conference on Electronics Informations and Communications
    • /
    • pp.137-142
    • /
    • 2004
  • In this paper, we propose a new scheme for geometry coding of three-dimensional (3-D) mesh models using a fixed spectral basis. In order to code the mesh geometry information, we generate a fixed spectral basis using the dual graph derived from the 3-D mesh topology. After we partition a 3-D mesh model into several independent sub-meshes to reduce coding complexity, the mesh geometry information is projected onto the generated orthonormal bases which are the eigenvectors of the Laplacian matrix of the 3-D mesh. Finally, spectral coefficients are coded by a quantizer and a variable length coder. The proposed scheme can not only overcome difficulty of generating a fixed spectral basis, but also reduce coding complexity. Moreover, we can provide an efficient multi-resolution representation of 3-D meshes.

  • PDF

High Resolution Probabilistic Quantitative Precipitation Forecasting in Korea

  • Oh, Jai-Ho;Kim, Ok-Yeon;Yi, Han-Se;Kim, Tae-Kuk
    • 한국제4기학회지
    • /
    • 제19권2호
    • /
    • pp.74-79
    • /
    • 2005
  • Recently, several attempts have been made to provide reasonable information on unusual severe weather phenomena such as tolerant heavy rains and very wild typhoons. Quantitative precipitation forecasts and probabilistic quantitative precipitation forecasts (QPFs and PQPFs, respectively) might be one of the most promising methodologies for early warning on the flesh floods because those diagnostic precipitation models require less computational resources than fine-mesh full-dynamics non-hydrostatic mesoscale model. The diagnostic rainfall model used in this study is the named QPM(Quantitative Precipitation Model), which calculates the rainfall by considering the effect of small-scale topography which is not treated in the mesoscale model. We examine the capability of probabilistic diagnostic rainfall model in terms of how well represented the observed several rainfall events and what is the most optimistic resolution of the mesoscale model in which diagnostic rainfall model is nested. Also, we examine the integration time to provide reasonable fine-mesh rainfall information. When we apply this QPM directly to 27 km mesh meso-scale model (called as M27-Q3), it takes about 15 min. while it takes about 87 min. to get the same resolution precipitation information with full dynamic downscaling method (called M27-9-3). The quality of precipitation forecast by M27-Q3 is quite comparable with the results of M27-9-3 with reasonable threshold value for precipitation. Based on a series of examination we may conclude that the proosed QPM has a capability to provide fine-mesh rainfall information in terms of time and accuracy compared to full dynamical fine-mesh meso-scale model.

  • PDF

Development of advanced rigorous two-step code system for evaluation of radioactive waste with high-resolution activation calculation

  • Kim, Do Hyun;Kim, Jiseok;Lee, Han Rim;Sun, Gwang Min;Shin, Chang Ho;Kim, Jong Kyung
    • Nuclear Engineering and Technology
    • /
    • 제53권6호
    • /
    • pp.2011-2018
    • /
    • 2021
  • Nowadays, evaluation of amounts and distributions of radioactive waste is an important preparatory step in the process of nuclear reactor decommissioning. For tentative estimation of radioactive waste, a cell-based rigorous 2 step (R2S) method usually is used; however, a poor resolution caused by the averaged flux and spectrum in a cell is still a great challenge because of leading to underestimated or overestimated results. To overcome the poor resolution, several systems were introduced. Neither system, however, provides any function for evaluation of radioactive waste amount and distribution. Thus, it is additionally required to classify radioactive waste based on the results of activation calculation. In this study, the advanced R2S (AR2S) system was developed. To verify the performance of the system, its results for a verification problem were compared with those of the cell-based R2S method. The results showed good agreement, which is to say, within 2.0% relative error. Also, several characteristics of fine/coarse mesh were analyzed. To demonstrate the performance of the AR2S system, the radioactive waste from the Japan Power Demonstration Reactor (JPDR) was estimated, and the result indicated a high-resolution distribution. Therefore, it is expected that the AR2S system will prove useful for precise evaluation of radioactive waste.

Application of adaptive mesh refinement technique on digital surface model-based urban flood simulation

  • Dasallas, Lea;An, Hyunuk
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.122-122
    • /
    • 2020
  • Urban flood simulation plays a vital role in national flood early warning, prevention and mitigation. In recent studies on 2-dimensional flood modeling, the integrated run-off inundation model is gaining grounds due to its ability to perform in greater computational efficiency. The adaptive quadtree shallow water numerical technique used in this model implements the adaptive mesh refinement (AMR) in this simulation, a procedure in which the grid resolution is refined automatically following the flood flow. The method discounts the necessity to create a whole domain mesh over a complex catchment area, which is one of the most time-consuming steps in flood simulation. This research applies the dynamic grid refinement method in simulating the recent extreme flood events in Metro Manila, Philippines. The rainfall events utilized were during Typhoon Ketsana 2009, and Southwest monsoon surges in 2012 and 2013. In order to much more visualize the urban flooding that incorporates the flow within buildings and high-elevation areas, Digital Surface Model (DSM) resolution of 5m was used in representing the ground elevation. Results were calibrated through the flood point validation data and compared to the present flood hazard maps used for policy making by the national government agency. The accuracy and efficiency of the method provides a strong front in making it commendable to use for early warning and flood inundation analysis for future similar flood events.

  • PDF

A Greedy Merging Method for User-Steered Mesh Segmentation

  • Ha, Jong-Sung;Park, Young-Jin;Yoo, Kwan-Hee
    • International Journal of Contents
    • /
    • 제3권2호
    • /
    • pp.25-29
    • /
    • 2007
  • In this paper, we discuss the mesh segmentation problem which divides a given 3D mesh into several disjoint sets. To solve the problem, we propose a greedy method based on the merging priority metric defined for representing the geometric properties of meaningful parts. The proposed priority metric is a weighted function using five geometric parameters, those are, a distribution of Gaussian map, boundary path concavity, boundary path length, cardinality, and segmentation resolution. In special, we can control by setting up the weight values of the proposed geometric parameters to obtain visually better mesh segmentation. Finally, we carry out an experiment on several 3D mesh models using the proposed methods and visualize the results.

폭발현상 해석을 위한 적응적 요소망 생성 (Adaptive Mesh Refinement for Dealing with Shock Wave Analysis)

  • 전용태;이민형
    • 한국CDE학회논문집
    • /
    • 제18권6호
    • /
    • pp.461-469
    • /
    • 2013
  • Computer simulation with FEM is very useful to analyze hypervelocity impact phenomena that are tremendously expensive or otherwise too impractical to analyze experimentally. Shock physics can be efficiently handled by mesh adaptation which allows finite element mesh to be locally optimized to resolve moving shock wave in explosion. In this paper, an adaptive meshing technique based upon quadtree data structure was applied to resolve ballistic impact phenomena. The technique can adaptively refine a mesh in the neighborhood of a shock and coarsen the mesh for the smooth flow behind the shock according to a criterion. The criterion for refinement and coarsening is based upon the standard deviation of the gradient of shock pressure on the associated field. Shock simulation starts with the rough mesh of the pressure field and mesh density is increased locally under the criterion at each time step. The results show that the mesh adaptation enables to minimize the global computation error of FEM and to increase storage and computational saving compared to the fixed resolution of the conventional static mesh approach.

Feature Extraction Method for the Character Recognition of the Low Resolution Document

  • Kim, Dae-Hak;Cheong, Hyoung-Chul
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권3호
    • /
    • pp.525-533
    • /
    • 2003
  • In this paper we introduce some existing preprocessing algorithm for character recognition and consider feature extraction method for the recognition of low resolution document. Image recognition of low resolution document including fax images can be frequently misclassified due to the blurring effect, slope effect, noise and so on. In order to overcome these difficulties in the character recognition we considered a mesh feature extraction and contour direction code feature. System for automatic character recognition were suggested.

  • PDF

계층적 Shrink-Wrapping 알고리즘을 이용한 등밀도면의 재구성 (Iso-density Surface Reconstruction using Hierarchical Shrink-Wrapping Algorithm)

  • 최영규;박은진
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제36권6호
    • /
    • pp.511-520
    • /
    • 2009
  • 본 논문에서는 입력 볼륨 데이터와 출력 메쉬 데이터에서 모두 계층성을 지원하는 새로운 등밀도 표면의 재구성 방법을 제안한다. 제안된 방법은 먼저 입력 볼륨 데이터로부터 3차원 팽창 필터를 사용하여 볼륨 피라미드라 불리는 볼륨의 계층구조를 만든다. 볼륨 피라미드가 만들어진 후 해상도가 최저인 피라미드의 최상단 볼륨에서부터 셀경계표현 방법을 이용하여 조악한 초기 메쉬를 생성한다. 이러한 메쉬를 반복적으로 변형하여 O(3)-인접성 조건하에서 추출한 등밀도점을 잘 근사하도록 하는데, 이를 위해 SWIS (표면축소기반의 등밀도면 재구성법[6]) 알고리즘에서 사용되었던 표면 축소 단계와 평활화 단계를 사용한다. 또한 최종등밀도면의 정밀한 표면을 만들 수 있도록 메쉬를 반복적으로 분할(subdivision)한다. 제안된 방법은 생성되는 표면이 표면의 압축이나 점진적인 전송 등과 같은 다중 해상도 알고리즘에 활용될 수 있다는 장점이 있다.

Mesh size refining for a simulation of flow around a generic train model

  • Ishak, Izuan Amin;Alia, Mohamed Sukri Mat;Salim, Sheikh Ahmad Zaki Shaikh
    • Wind and Structures
    • /
    • 제24권3호
    • /
    • pp.223-247
    • /
    • 2017
  • By using numerical simulation, vast and detailed information and observation of the physics of flow over a train model can be obtained. However, the accuracy of the numerical results is questionable as it is affected by grid convergence error. This paper describes a systematic method of computational grid refinement for the Unsteady Reynolds Navier-Stokes (URANS) of flow around a generic model of trains using the OpenFOAM software. The sensitivity of the computed flow field on different mesh resolutions is investigated in this paper. This involves solutions on three different grid refinements, namely fine, medium, and coarse grids to investigate the effect of grid dependency. The level of grid independence is evaluated using a form of Richardson extrapolation and Grid Convergence Index (GCI). This is done by comparing the GCI results of various parameters between different levels of mesh resolutions. In this study, monotonic convergence criteria were achieved, indicating that the grid convergence error was progressively reduced. The fine grid resolution's GCI value was less than 1%. The results from a simulation of the finest grid resolution, which includes pressure coefficient, drag coefficient and flow visualization, are presented and compared to previous available data.