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Abstract:

In this paper, we propose a new scheme for geometry coding of three-dimensional (3-D) mesh models using a fixed
spectral basis. In order to code the mesh geometry information, we generate a fixed spectral basis using the dual
graph derived from the 3-D mesh topology. After we partition a 3-D mesh model into several independent sub-
meshes to reduce coding complexity, the mesh geometry information is projected onto the generated orthono-mal
bases which are the eigenvectors of the Laplacian matrix of the 3-D mesh. Finally, spectral coefficients are coded by
a quantizer and a variable length coder. The proposed scheme can not only overcome difficulty of generating a fixed
spectral basis, but also reduce coding complexity. Moreover, we can provide an efficient multi-resolution represen-
tation of 3-D meshes.
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1. INTRODUCTION On the other hand, Karni and Gotsman [4] proposed

As demands for high quality visual services have in-
creased from consumers and the interest of three-
dimensional (3-D) meshes has grown rapidly, it is es-
sential to develop efficient 3-D mesh data coding
methods. As one of 3-D representation methods, the
mesh model is simply a set of planar polygons in the
3-D Euclidean space. In order to represent a mesh sur-
face, we assume that a 3-D model consists of triangu-
lar faces.

Fundamentally, there are three types of information
to describe the mesh surfaces; geometry, connectivity,
and photometry information. The geometry informa-
tion describes 3-D coordinates of mesh vertices, and
the connectivity information describes the topology
with the incidence relations among vertices, edges and
faces. The photometry information includes surface
normal vectors, colors, texture coordinates that are the
attributes of geometry information. These three data
sets can be the targets for 3-D mesh coding. In this
paper, we focus on the mesh geometry information.

Mesh geometry coding methods can be divided into
two categories: spatial prediction methods and spectral
methods. Deering [1] and Taubin et al. [2] ordered the
vertices according to the connectivity iriformation, and
then coded the vertices using a simple linear predictor
in the spatial domain. Similarly, the mesh coding
scheme of Touma and Gotsman [3] developed an algo-
rithm to code the topology as a traversal of the vertices
in the spatial domain, and the vertex coordinates are
coded by predicting them along the traversal order
using a parallelogram scheme. Finally, the prediction
errors are entropy-coded.

the spectral methods for the 3-D mesh geometry coding.
Karni and Gotsman projected the mesh geometry onto
basis vectors which are the eigenvectors of the mesh
Laplacian matrix. Although Karni and Gotsman ob:ain
good results from the spectral method, there are some
critical problems such as the difficulty of fixed spectral
basis generation and the tremendous coding complexity.

In this paper, we are concerned about the mesh ge-
ometry coding using the spectral method and try to
solve the fixed spectral basis generation problem. We
propose a new scheme for the orthonormal specral
basis generation. Moreover, we partition 3-D mzsh
models into several independent pieces to reduce cad-
ing complexity.

This paper is organized as follows. After we review
the previous works in Section 2, Section 3 describes
the proposed spectral coding method of the mesh ze-
ometry. Section 4 provides experimental results, end
we make conclusions in Section 5.

2. MESH GEOMTRY CODING

2.1 Spatial Prediction Methods

The parallelogram prediction is the most famous ccd-
ing scheme for mesh geometry. Touma and Gotman [3]
proposed the parallelogram prediction method in 1958.
Basically, the parallelogram prediction can be one of
spatial prediction methods since it is performed in the
3-D spatial domain.

We can get the prediction vertex v=(xy.,z,) of each
vertex v=(x,y,z) based on the parallelogram prediction
in the triangle spanning tree as we can see in Fig.l.
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Before we apply the parallelogram prediction, we first
traverse all vertices to obtain the coding order that is
called by triangle tree traversal. Then, we coded the
vertex coordinates along the triangle traversal.

v

Yy

V, =V, +v, -V,

Fig. 1. Parallelogram prediction

For example, when we pass the triangle 1 to triangle
2, the vertex vy, v), and v, are already coded. The op-
posite vertex v from the common edge (v, v|) is pre-
dicted as v+ v,-v,,. As a result, the predicted vertex v,
forms a parallelogram and belong the same plane with
the three ancestors. Finally, we calculate and code the
prediction errors by v — v,. For some vertices, all three
ancestors may not be available. When we use two an-
cestors, the prediction coefficients are set to 2 and —1.
If there is only one ancestor, we use the ancestor di-
rectly as the prediction value. In case of no ancestor, a
null prediction is used.

2.2 Spectral Methods

Karni and Gotsman show us how to extend the classi-
cal Fourier analysis to 3-D mesh data [4]. We can as-
sume a simple 3-D mesh model which is composed of
n vertices. The adjacency matrix A of the model can
be represented with the circular n x n matrix. The di-
agonal matrix D also can be represented with the n x n
matrix. Finally, we can obtain the so-called Laplacian
matrix from the adjacent matrix A and the diagonal
matrix D. The Laplacian matrix

describes the analog of the second spatial derivative
conceptually.

The Fourier basis functions for 2-D signals are ob-
tained as the eigenvectors of the Laplacian matrix of
the graph with the topology of a 2-D grid. Karni and
Gotsman try to adopt the 2-D spectral transformation
to the 3-D mesh topologies. First, we can define the
adjacency matrix A and diagonal matrix D.

1 iand jare neighbors
4= Jareneie (M
i 0 otherwise
d. i=j,valenceof i
py={t R )
0 otherwise

The diagonal components of D describe the valence
of each vertex. The Laplacian matrix L can be ob-
tained using the equation such that L =1 - DA, where I
is the identity matrix
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L; =¢-1/d; iand jare neighbors ©)
0 otherwise

Karni and Gotsman perform the spectral coding by
projecting the geometry data onto the eigenvectors of
Laplacian matrix L and then the spectral coefficients
are quantized. We should note that the eigenvectors
may not be fixed since the valences of vertices are not
fixed. In other words, the spectral bases are different
according to the mesh topology. Karni and Gotsman
try to solve the problem by mapping the arbitrary mesh
topology into a regular mesh topology {5]. However,
serious deformation has occurred when the arbitrary
meshes are mapped into a regular mesh as we can see
in Fig. 2. In this paper, we propose a new algorithm to
generate the fixed spectral basis.

Fig. 2. Deformation problem

3. SPECTRAL GEOMTRY CODING

3.1. Spectral Coding Method Using Dual Graph

In ordeér to code the 3-D mesh geometry, we propose a
spectral coding using a fixed spectral basis. The pro-
posed method calculates a fixed spectral basis from the
dual graph derived from the mesh topology. As we
mentioned in the spectral mesh geometry coding, it is
difficult to generate a fixed basis since the topology is
different according to the mesh model. We try to ex-
tend previous 2-D transform coding based on a fixed
spectral basis into 3-D mesh coding.
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Fig. 3. Block diagram of spectral geometry coding

Fig. 3 shows the entire block diagram for the pro-
posed system. First, we analyze the input mesh models
into the three types information. In other words, we
extract the geometry, connectivity and photometry
information from the input model. Then, we partition
the mesh into several independent pieces to reduce



complexity using the extracted connectivity informa-
tion. We call the independent pieces as a submesh.
During a mesh partitioning, we obtain the dual graph
for each submesh. After that, we find the fixed spectral
basis from the property of the dual graph. Finally, the
mesh geometry is projected onto the generated fixed
spectral basis and the transformed geometry data are
coded through a quantizer and a variable length coder.

3. 2 Mesh Partitioning

Mesh partitioning techniques are used to divide a
given 3-D mesh model into several independent
pieces. We call an independent piece as a submesh.
When submeshes are transmitted instead of the entire
model, it is useful for storage and transmission since
spatial transmission errors will not affect the entire
model at the receiver side. The main reason that we
carry out the mesh partitioning in this paper is to de-
crease computational complexity.

We apply a multi-seed traversal technique that is one
of the well-known partitioning techniques [6]. One of
the important parts in mesh partitioning is to select the
initial vertex positions that are the starting points of
the partitioning process. In this paper, we use the K-
means clustering algorithm to select initial vertices [7].
First, we set the number of the initial submeshes K that
is the total number of child submeshes obtained from a
parent submesh. The K-means algorithm performs to
find positions of initial vertices as many as K. The
initial vertices are selected by.

1. Choose K initial center vertices z,(1),
Zy(1),...,zx(1) by selecting arbitrary K verti-
ces in the parent submesh.

2. At the k-th iterative step, distribute the input
vertices {X} among the K cluster domains by
eq. 4

xeS;(k)y if lx—z;(O)<x-z (K )

foralli=1,2,..,K,i j,where §i(k) in-
dicates the set of vertices whose center is
Zj(k).

3. From Step 2, compute new cluster centers
zik+1), j = 1,2,..K, such that the sum of
squared distances from all points in S;(k) to
the new cluster center is minimized. In other
words, the new cluster center zik+1) is com-
puted to minimize the performance index

J,= Y lx—x,(k+ D). j=1.2,...K )

Here, we note that zj(k+1) is simply the
sample mean of Sj(k). Therefore, the new
vertices center is given by eq. 6

2 k4= 3 x j=1,2,.,k 'O

j seS, (k)
where N;is the number of samples in Si(k).

4. If z(k+1) = zi(k) for j = 1,2,... K, the algo-
rithm has converged and the procedure will
be terminated. Otherwise, go to Step 2. If the
procedure is terminated, the new center ver-
tices z,(k+1), zy(k+1),..., zx(k+1) become
initial vertices.

As a result, the center position is convergent to nzw
vertex that is the optimal position of the initial vert:x.
Therefore, the mesh partitioning from these initial ver-
tices can be operated in an optimal manner. On “he
contrary, the K-means clustering algorithm needs more
computational time than other algorithms, such a
maximum-distance algorithm. However, we do not
need the real-time partitioning techniques since the
submeshes may be stored in a data storage througt. a
off-line process in advance.

Fig. 4(a) and Fig. 4(b) show selections of initial ver-
tices by the maximum-distance algorithm and the X-
means algorithm, respectively, when the number K of
the initial submeshes is three. In Fig. 4, we can notice
that the initial vertex positions selected by the X<-
means algorithm are more optimal than those selectzd
by the maximum distance algorithm.

PR . RN /b

(2) (b) () (4

Fig. 4. Initial vertex selection (a) maximum distan:e
algorithm (b) K-means algorithm (c) the result of (),
(d) the result of (b)

3.3 Generation of Fixed Basis

Given a planar graph G, its geometric dual graph G* is
constructed by placing a vertex in each region of G.
Fig. 5 shows an example of dual graph for simple pla-
nar graph. The dual graph G* of a polyhedral graph 3
has dual graph vertices each of which corresponds to a
face of G and each of whose faces corresponds to a
graph vertex of G.

In this paper, we use the dual graph G* for generat-
ing a fixed spectral basis. After obtaining submeshes
from mesh partitioning, we generate their dual graphes
by connecting the centers of gravity of triangle faces
for each submesh. One of important concerns for a
dual graph is whether we can regenerate the mesh ge-
ometry from its dual graph.
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As we can see in Fig. 6, we should know the first
two vertices of each submesh in order to regenerate the
mesh geometry. We can make a triangle face from the
two vertices and the one vertex of dual graph. Basi-
cally, we can define a plane with three vertices: the
first two vertices v1 and v2 and the one vertex of dual
graph dl. The third vertex v3 of a triangle face is lo-
cated on the defined plane. We calculate the midpoint
tl from vl and v2. The third vertex v3 is located on
the line from dl1 and t1. Finally, we can find the third
vertex v3 by advancing two times of the distance be-
tween d1 and t1 from d1.

Fig. 5. Polyhedral graph and its dual graph

With this kind of procedure, we can regenerate the
mesh geometry perfectly. In other words, we can re-
place the mesh geometry with the first two vertices of
mesh geometry and its dual graph. Therefore, we com-
press these information instead of the mesh geometry.

Since the mesh models are composed of triangular
faces, most of the valences of its dual graph vertices
are 3. This property is the idea to generate a fixed
spectral basis. The main problem of creating a fixed
spectral basis is the irregularity of the mesh. We can
solve the problem by using the duality between the
mesh topology and its dual graph.

Fig. 6. Regeneration of mesh geometry with its dual
graph

We can notice that the valence of dual graph vertex
1s 3 when the triangle face is the inner face in the mesh
in Fig. 5. When the triangle face is on the boundary of
the mesh and is not an ear, the valence of dual graph
vertex is 2. In case the triangle face is an ear, we can
assume the valence of dual graph vertex is 1.
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With these assumptions, we can generate the fixed
spectral basis by analyzing the each submesh topology.
Basically, since the topology information is coded and
transmitted prior to the mesh geometry, we can extract
the boundary information at the decoder side. As a
result, we can make a basis for the spectral coding
according to the boundary information and the number
of inner triangle.

3.4 Spectral Coding of Mesh Geometry

After the dual graph vertices are projected onto the gen-
erated basis, the spectral coefficients are coded through
a quantizer and a variable length coder. First, the spec-
tral coefficients are uniformly quantized with the speci-
fied level that can be between 10 and 16 bits. The re-
duction of geometry information is actually achieved by
the quantization step. Finally, the quantized coefficients
are entropy coded using a Huffman or arithmetic coder.
We can provide the progressive transmission and multi-
resolution representation of 3-D meshes by selecting the
spectral coefficients to be sent.

3.5 Hausdroff Distance

In order to evaluate the distortion between the original
3-D meshes and the reconstructed ones, we should
define a error metric. For the 3-D error metric, Haus-
droff distance is widely used. The original and recon-
structed models have same topology information.
However, they may have different values of vertex
positions. The closest vertex of a reconstructed model
is selected and the distance is calculated when we de-
fine the distance by eq. 7.

d(p,S') = min|p - p| ™

Here, d(p,S’) denotes the distance between p vertex
and surface S’. As a result, Hausdroff distance can be
defined by eq. 8.

d(S,S'):mand(p,S’) (8)

Here, S denotes the original model and S’ denotes the
reconstructed model respectively.

4. EXPERIMENTAL RESULTS

We have evaluated the proposed algorithm with the COW
model. It consists of 2903 vertices and 5804 faces. We
partitioned the COW model into 20 submeshes. We
also used Hausdroff distance, which is the common
measure of 3-D model deformation, to compare the
proposed algorithm with the previous algorithm.
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Fig. 7. 19th submesh of the COW model



@ (b)
Fig. 8. Result of the 19th submesh (a) basis generation
using a regular mesh (b) basis generation using a dual
graph

Fig. 7 shows the 19th submesh of the COW model
and Fig. 9 shows the result of spectral coding. We as-
sume that the decoder know the the number of inner
vertices, boundary and ear of the 19th submesh. We
generated 196 fixed spectral bases for the 19th sub-
mesh. For the experiment, we code 150 spectral coef-
ficients.

As you can see in Fig. 8, we can notice some defor-
mation in both algorithms. However, our proposed
algorithm had less deformation than the previous algo-
rithm in the left eye region of COW model. The main
reason is that there is mismatching between the origi-
nal mesh and a regular mesh in the previous algorithm
since the left eye region of COW region is not regular.
Table 1 also shows the Hausdroff distance is smaller in
the proposed system.

(@ (b)

Fig. 10. Result of the 4th submesh (a) basis generation
using a regular mesh (b) basis generation using a dual
graph

Fig. 9 also shows the 4th submesh of the COW
model and Fig. 10 shows the results of the 4th sub-
mesh. As we can see in Fig. 9, the valances of the 4th
submesh vertices are all 6. As a result, the previous
algorithm works better than ours. In other words, the

algorithm using a regular mesh can be performed well
than our algorithm. As we can imagine, our algorithm
have error propagation problem when we regenerate
the mesh geometry from the dual graph.

One of method to solve the error propagation prab-
lem is the insertion of a real mesh geometry informa-
tion in encoder side to refresh the propagated error. We
also develop an algorithm to overcome the propagat.on
problem by selecting mesh geometry coding mode
adaptively.

Table 1. Comparison of Hausdroff distance

Subm esh vertces coeff, Reguhrmesh pualc rapt
1 182 130 20959 00059
2nd 156 130 0.0079 v 0562
3 158 130 0.0069 0.0059
4 186 130 8.0104 0.0118
se 187 150 0.0072 0.05468
6 182 150 0.0058 0.0041
7™ 152 130 00046 0.0049
8* 177 130 0.0102 00297
v 174 150 0.0046 0.0028
10* 159 130 0.0064 0.0648

Subm esh verttes coeff. ReguhrM esh pualG raph

ha gy 185 150 0.0088 $.0075
12* 159 130 0.0041 50038
13* 172 150 0.0047 4.003%
14 198 150 0.0072 o .04
15* 188 150 9.0047 0.0049
16" 164 130 00051 ©.004%
7 161 130 2.0027 0.0031
18 174 130 0.0045 ¢.0041
19* 170 150 0.0058 a.003%
20 173 150 0.0069 £.0042

5. CONCLUSIONS

In this paper, we proposed a new algorithm for mesh
geometry spectral coding. We generate the fixed spec-
tral basis from the dual graph derived from the mesh
topology. After we generate fixed spectral basis, vie
project the mesh geometry onto the basis. Then, vse
code the spectral coefficients with a quantizer and a
variable length coder. The proposed algorithm can
reduce the deformation after spectral coding and r=-
duce the coding complexity using a mesh partitioning
technique. Our algorithm can be used for the progres-
sive transmission and multi-representation applications
of 3-D meshes.

However, we will have to research more to solve two
problems in the future. First, we should try to solve the
error propagation problem when the geometry infor-
mation regenerate from dual graph information. Sec-
ond, we should develop a good mesh partition scheme
to reduce coding complexity.
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