• Title/Summary/Keyword: Mesh optimization

Search Result 213, Processing Time 0.021 seconds

Development of Shape Optimization Scheme Using Selective Element Method (Application to 2-D Problems) (선택적 요소방법을 이용한 형상 최적 설계 기법 개발)

  • Shim, J.W.;Shin, J.K.;Park, G.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.531-536
    • /
    • 2001
  • The structural shape optimization is a useful tool for engineers to determine the shape of a structure. During the optimization process, relocations of nodes happen successively. However, excessive movement of nodes often results in the mesh distortion and eventually deteriorates the accuracy of the optimum solution. To overcome this problem, an efficient method for the shape optimization has been developed. The method starts from the design domain which is large enough to hold the possible shape of the structure. The design domain has pre-defined uniform fine meshes. At every cycle, the method judges whether all the elements are inside of the structure or not. Elements inside of the structure are assigned with real material properties, however elements outside of the structure are assigned with nearly zero values. The performance of the method is evaluated through various examples.

  • PDF

Multiple cutout optimization in composite plates using evolutionary structural optimization

  • Falzon, Brian G.;Steven, Grant P.;Xie, Mike Y.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.5
    • /
    • pp.609-624
    • /
    • 1997
  • The optimization of cutouts in composite plates was investigated by implementing a procedure known as Evolutionary Structural Optimization. Perforations were introduced into a finite element mesh of the plate from which one or more cutouts of a predetermined size were evolved. In the examples presented, plates were rejected from around each evolving cutout based on a predefined rejection criterion. The limiting ply within each plate element around the cutout was determined based on the Tsai-Hill failure criterion. Finite element plates with values below the product of the average Tsai-Hill number and a rejection criterion were subsequently removed. This process was iterated until a steady state was reached and the rejection criterion was then incremented by an evolutionary rate and the above steps repeated until the desired cutout area was achieved. Various plates with differing lay-up and loading parameters were investigated to demonstrate the generality and robustness of this optimization procedure.

A Study on the Modification of a Finite Element for Improving Shape Optimization (형상최적화 향상을 위한 유한요소의 개선에 관한 연구)

  • Sung, Jin-Il;Yoo, Jeong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.367-371
    • /
    • 2001
  • In the shape optimization based on the finite element method, the accuracy of finite element analysis of a given structure is important to determine the final shape. In case of a bending dominant problem, finite element solutions by the full integration scheme are not reliable because of the locking phenomenon. Furthermore, in the process of shape optimization, the mesh distortion is large due to the change of the structure outline: therefore, we cannot guarantee the accurate result unless the finite element itself is accurate. We approach to more accurate shape optimization to diminish these inaccuracies by improving the existing finite element. The shape optimization using the modified finite element is applied to a two-dimensional simple beam. Results show that the modified finite element have improved the optimization results.

  • PDF

Understanding Channel-diversity Oriented Routing Metrics for Multicast in Wireless Mesh Networks

  • Gao, Hui;Nam, Ji-seung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.418-420
    • /
    • 2013
  • Issues on design of routing scheme and routing metric for multicast in multi-channel multi-radio (MCMR) wireless mesh networks (WMNs) are discussed. Emphasis is placed on channel-diversity oriented routing metrics. From case study the conclusion to be drawn is that the key for design of channel-diversity oriented routing metrics is how to construct an optimization function to quantify interdependence between channel assignment and multicast routing throughput.

Efficient Data Representation of Stereo Images Using Edge-based Mesh Optimization (윤곽선 기반 메쉬 최적화를 이용한 효율적인 스테레오 영상 데이터 표현)

  • Park, Il-Kwon;Byun, Hye-Ran
    • Journal of Broadcast Engineering
    • /
    • v.14 no.3
    • /
    • pp.322-331
    • /
    • 2009
  • This paper proposes an efficient data representation of stereo images using edge-based mesh optimization. Mash-based two dimensional warping for stereo images mainly depends on the performance of a node selection and a disparity estimation of selected nodes. Therefore, the proposed method first of all constructs the feature map which consists of both strong edges and boundary lines of objects for node selection and then generates a grid-based mesh structure using initial nodes. The displacement of each nodal position is iteratively estimated by minimizing the predicted errors between target image and predicted image after two dimensional warping for local area. Generally, iterative two dimensional warping for optimized nodal position required a high time complexity. To overcome this problem, we assume that input stereo images are only horizontal disparity and that optimal nodal position is located on the edge include object boundary lines. Therefore, proposed iterative warping method performs searching process to find optimal nodal position only on edge lines along the horizontal lines. In the experiments, we compare our proposed method with the other mesh-based methods with respect to the quality by using Peak Signal to Noise Ratio (PSNR) according to the number of nodes. Furthermore, computational complexity for an optimal mesh generation is also estimated. Therefore, we have the results that our proposed method provides an efficient stereo image representation not only fast optimal mesh generation but also decreasing of quality deterioration in spite of a small number of nodes through our experiments.

Application Core Mapping to Minimize the Network Latency on Regular NoC Architectures (규칙적인 NoC 구조에서의 네트워크 지연 시간 최소화를 위한 어플리케이션 코어 매핑 방법 연구)

  • Ahn, Jin-Ho;Kim, Hong-Sik;Kim, Hyun-Jin;Park, Young-Ho;Kang, Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.117-123
    • /
    • 2008
  • In this paper, we propose a novel ant colony optimization(ACO)-based application core ma ins method for implementing network-on-chip(NoC)-based systems-on-chip(SoCs). The proposed method efficiently put application cores to a mesh-type NoC satisfying a given design objective, the network latency. Experimental results using a functional circuit including 12 cores show that the proposed algorithm can produce near optimal mapping results within a second.

Optimization of 3D Triangular Mesh Watermarking Using ACO-Weber's Law

  • Narendra, Modigari;Valarmathi, M.L.;Anbarasi, L.Jani
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4042-4059
    • /
    • 2020
  • The development of new multimedia techniques such as 3D printing is increasingly attracting the public's attention towards 3D objects. An optimized robust and imperceptible watermarking method based on Ant Colony Optimization (ACO) and Weber Law is proposed for 3D polygonal models. The proposed approach partitions the host model into smaller sub meshes and generates a secret watermark from the sub meshes using Weber Law. ACO based optimized strength factor is identified for embedding the watermark. The secret watermark is embedded and extracted on the wavelet domain. The proposed scheme is robust against geometric and photometric attacks that overcomes the synchronization problem and authenticates the secret watermark from the distorted models. The primary characteristic of the proposed system is the flexibility achieved in data embedding capacity due to the optimized strength factor. Extensive simulation results shows enhanced performance of the recommended framework and robustness towards the most common attacks like geometric transformations, noise, cropping, mesh smoothening, and the combination of such attacks.

Shape Optimal Design by P-version of Finite Element Method (p-Version 유한요소법에 의한 형상 최적화설계)

  • Kim, Haeng Joon;Woo, Kwang Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.729-740
    • /
    • 1994
  • In the shape optimal design based on h-version of FEM, the ideal mesh for the initial geometry most probably will not be suitable for the final analysis. Thus, it is necessary to remesh the geometry of the model at each stage of optimization. However, the p-version of FEM appears to be a very attractive alternative for use in shape optimization. The main advantages are as follows; firstly, the elements are not sensitive to distortion for interpolation polynomials of order $p{\geq}3$; secondly, even singular problems can be solved more efficiently with p-version than with the h-version by proper mesh design; thirdly, the initial mesh design are identical. The 2-D p-version model for shape optimization is presented on the basis of Bezier's curve fitting, gradient projection method, and integrals of Legendre polynomials. The numerical results are performed by p-version software RASNA.

  • PDF

ELECTRICAL RESISTANCE IMAGING OF TWO-PHASE FLOW WITH A MESH GROUPING TECHNIQUE BASED ON PARTICLE SWARM OPTIMIZATION

  • Lee, Bo An;Kim, Bong Seok;Ko, Min Seok;Kim, Kyung Youn;Kim, Sin
    • Nuclear Engineering and Technology
    • /
    • v.46 no.1
    • /
    • pp.109-116
    • /
    • 2014
  • An electrical resistance tomography (ERT) technique combining the particle swarm optimization (PSO) algorithm with the Gauss-Newton method is applied to the visualization of two-phase flows. In the ERT, the electrical conductivity distribution, namely the conductivity values of pixels (numerical meshes) comprising the domain in the context of a numerical image reconstruction algorithm, is estimated with the known injected currents through the electrodes attached on the domain boundary and the measured potentials on those electrodes. In spite of many favorable characteristics of ERT such as no radiation, low cost, and high temporal resolution compared to other tomography techniques, one of the major drawbacks of ERT is low spatial resolution due to the inherent ill-posedness of conventional image reconstruction algorithms. In fact, the number of known data is much less than that of the unknowns (meshes). Recalling that binary mixtures like two-phase flows consist of only two substances with distinct electrical conductivities, this work adopts the PSO algorithm for mesh grouping to reduce the number of unknowns. In order to verify the enhanced performance of the proposed method, several numerical tests are performed. The comparison between the proposed algorithm and conventional Gauss-Newton method shows significant improvements in the quality of reconstructed images.

Parallel 3-D Aerodynamic Shape Optimization on Unstructured Meshes

  • Lee, Sang-Wook;Kwon, Oh-Joon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.45-52
    • /
    • 2003
  • A three-dimensional aerodynamic shape optimization technique in inviscid compressible flows is developed by using a parallel continuous adjoint formulation on unstructured meshes. A new surface mesh modification method is proposed to overcome difficulties related to patch-level remeshing for unstructured meshes, and the effect of design sections on aerodynamic shape optimization is examined. Applications are made to three-dimensional wave drag minimization problems including an ONERA M6 wing and the EGLIN wing-pylon-store configuration. The results show that the present method is robust and highly efficient for the shape optimization of aerodynamic configurations, independent of the number of design variables used.