• 제목/요약/키워드: Mesh modeling

Search Result 354, Processing Time 0.034 seconds

IGBT Mesh-Topology Modeling And Its Application To Latch-Up Performance

  • Zhang H.;Duan F.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.22-25
    • /
    • 2001
  • A new mesh-topology model of IGBT is presented. It can be applied to the research of IGBT's static and dynamic latch-up (du/dt latch-up, overheat latch-up, overload latch-up, overvoltage latch-up) as well as the switching on-off behavior of the device. The overcurrent latch-up is analyzed.

  • PDF

Procedural Modeling Algorithm for Traditional Stone Fence Creator (전통 돌담 생성을 위한 절차적 모델링 알고리즘)

  • Park, Kyeongsu
    • Journal of Digital Convergence
    • /
    • v.11 no.8
    • /
    • pp.205-212
    • /
    • 2013
  • In this paper, we present a procedural modeling algorithms to create Korean traditional stone fence using the fractal subdivision. The main process of the algorithm is to get the next step mesh by subdividing each triangle in the previous step triangular mesh. This process is repeated recursively. Dividing each triangle into four sub-triangles after choosing a random point on each side of the triangle and moving each vertices in the normal direction with random perturbations make the bumpy appearance of stone fences. In each step we remove flat vertices which does not influence the shape of the stone. The discrete curvature determines the flatness of a vertex. New triangles whose vertices are the vertices around the removed vertex are added to make a triangular mesh.

AUTOMATIC MESH GENERATION AROUND SHIP HULL USING THE MACRO (매크로 기능을 이용한 선박 격자의 자동 생성 기법)

  • Lee, J.H.;Rhee, S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.71-76
    • /
    • 2009
  • The research to predict the resistance performance of the ship using the CFD analysis is increasing. For the CFD numerical analysis the computational mesh, which is proper to computational model, has to be made before the analysis is begun. In the parametric study, even though the deformation of each case is not very sharp, the whole computational mesh should be regenerated according to the conventional way. Hence, lots of effort is needed to repeated mesh generation work. To solve these problems, the automatic mesh generation method using the macro function of commercial CAD program and mesh generation program is introduced in this study. First, in the CAD program, by using the macro function and putting the deformation rate of bow and stern in lengthwise, the repeated modeling work is performed automatically. Next, the generated geometries are read by the mesh generation program and the proper mesh for the geometry is created automatically also using the macro function. The hybrid mesh which has unstructured grid near the bow and stern and structured grid in the remaining part of domain is used. The verification of the developed method is done by applying the method to predict the resistance performance of the podded propulsion cruise ship of the Daewoo Shipbuilding & Marine Engineering (DSME) in the cases of different length of bow and stern and pod set in different position. The author believes that the introduced method can help to make the database to optimize the resistance performance of the ship in various cases can be constructed without difficulty.

  • PDF

Mesh Independent 3-D Modeling of Spot Welded Joints using Finite Elements with Embedded Strong Discontinuities (강한 불연속이 내장된 유한요소를 이용한 스폿 용접 접합의 망 독립적 삼차원 모델링)

  • Kim, Jongheon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.283-288
    • /
    • 2017
  • A spot welded joint is modeled using 3-D finite elements with embedded strong discontinuities. The spot weld is represented by a special cohesive law on the embedded discontinuity surface, instead of meshing its geometry. This strategy naturally eliminates the need of adaptive FEM meshes fitting the local geometry of the spot weld. Mesh independent solutions are guaranteed by explicitly modeling the detailed shape of the spot weld, which is in contrast with the exiting approach using point constraints for the spot weld.

Transfer Learning based Parameterized 3D Mesh Deformation with 2D Stylized Cartoon Character

  • Sanghyun Byun;Bumsoo Kim;Wonseop Shin;Yonghoon Jung;Sanghyun Seo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3121-3144
    • /
    • 2023
  • As interest in the metaverse has grown, there has been a demand for avatars that can represent individual users. Consequently, research has been conducted to reduce the time and cost required for the current 3D human modeling process. However, the recent automatic generation of 3D humans has been focused on creating avatars with a realistic human form. Furthermore, the existing methods have limitations in generating avatars with imbalanced or unrealistic body shapes, and their utilization is limited due to the absence of datasets. Therefore, this paper proposes a new framework for automatically transforming and creating stylized 3D avatars. Our research presents a definitional approach and methodology for creating non-realistic character avatars, in contrast to previous studies that focused on creating realistic humans. We define a new shape representation parameter and use a deep learning-based method to extract character body information and perform automatic template mesh transformation, thereby obtaining non-realistic or unbalanced human meshes. We present the resulting outputs visually, conducting user evaluations to demonstrate the effectiveness of our proposed method. Our approach provides an automatic mesh transformation method tailored to the growing demand for avatars of various body types and extends the existing method to the 3D cartoon stylized avatar domain.

Damage and Fracture Analysis of Concrete using Homogenized Crack Model (혼합균열모델을 적용한 콘크리트의 손상 및 파괴해석)

  • Kim Kwang-Soo;Song Ha-Won;Nam Jin-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.155-158
    • /
    • 2005
  • Damage and fracture of concrete is characterized as the degradation of strength and stiffness. There can be modeled as the so-called homogenized crack model which can overcome the mesh sensitivity. But the plasticity and damage modeling for damage behavior before the fracture of concrete should be combined with the crack model. In this study, a damage function and an unified hardening-softening function are applied to the homogenized crack model to develope a 3-dimensional FEM program for nonlinear damage and fracture analysis of concrete. The comparison of numerical results and experimental data show that the combined modeling in this study can simulate the damage and fracture of concrete without the mesh-sensitivity. It is also shown that the behavior of the so-called Engineering Cementitious Composite(ECC) characterized by strain-hardening and multiple cracks can be well simulated using the modeling.

  • PDF

Application of Grid-based Approach for Auto Mesh Generation of Vacuum Chamber (자동 요소망 생성을 위한 격자구성기법 적용)

  • Lee J.S.;Park Y.J.;Chang Y.S.;Choi J.B.;Kim Y.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.844-847
    • /
    • 2005
  • A seamless analysis of complex geometry is one of greatly interesting topic. However, there are still gaps between the industrial applications and fundamental academic studies owing to time consuming modeling process. To resolve this problem, an auto mesh generation program based on grid-based approach has been developed for IT-product in the present study. At first, base mesh and skin mesh are generated using the information of entities which extracted from IGES file. Secondly the provisional core mesh with rugged boundary geometry is constructed by superimposing the skin mesh as well as the base mesh generated from the CAD model. Finally, the positions of boundary nodes are adjusted to make a qualified mesh by adapting node modification and smoothing techniques. Also, for the sake of verification of mesh quality, the hexahedral auto mesh constructed by the program is compared with the corresponding tetrahedral free mesh and hexahedral mapped mesh through static finite element analyses. Thereby, it is anticipated that the grid-based approach can be used as a promising pre-processor for integrity evaluation of various IT-products.

  • PDF

Finite element modeling of the mandible using voxel mesh method (Voxel mesh 기법을 이용한 하악골의 유한요소모델링)

  • 이은택;오택열;변창환;이병권;유용석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.600-604
    • /
    • 1997
  • Knowledge of the complex biomechanical behavior of the human mandible is of great importance in various clinical situations. Various approaches can be used to evaluate the physical behavior of bone. In this study, we developed the voxel mesh program(Bionix) and generated FE models of mandible using Bionix and using handmade work and compared them with free vibration results derived from finite element analysis(FEA). The data of FE models based on DICOM File exported from Computed tomography(CT). Comparing the two models, we found a good correlation about mode type and natural frequency. The voxel based finite element mesh is a valid and accurate method to predict parameters of the complex biomechanical behavior of human mandibles.

  • PDF

Modeling of pile end resistance considering the area of influence around the pile tip

  • Hyodo, Junichi;Shiozaki, Yoshio;Tamari, Yukio;Ozutsumi, Osamu;Ichii, Koji
    • Geomechanics and Engineering
    • /
    • v.17 no.3
    • /
    • pp.287-294
    • /
    • 2019
  • The finite element method (FEM) is widely used to evaluate the seismic performance of pile-supported buildings. However, there are problems associated with modeling the pile end resistance using the FEM, such as the dependence on the mesh size. This paper proposes a new method of modeling around the pile tip to avoid the mesh size effect in two-dimensional (2D) analyses. Specifically, we consider the area of influence around the pile tip as an artificial constraint on the behavior of the soil. We explain the problems with existing methods of modeling the pile tip. We then conduct a three-dimensional (3D) analysis of a pile in various soil conditions to evaluate the area of influence of the soil around the pile tip. The analysis results show that the normalized area of influence extends approximately 2.5 times the diameter of the pile below the pile tip. Finally, we propose a new method for modeling pile foundations with artificial constraints on the nodal points within the area of influence. The proposed model is expected to be useful in the practical seismic design of pile-supported buildings via a 2D analysis.

3-Dimensional Printing for Mesh Types of Short Arm Cast by Using Computed Tomography (전산화단층영상을 이용한 그물형 손목 부목의 3D 프린팅)

  • Seoung, Youl-Hun
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.1
    • /
    • pp.308-315
    • /
    • 2015
  • The purpose of this study, using 3D printer, was tried to fabricate the short arm cast of mesh types that can be hygienic and adequate ventilation with a good radiography. We used the multi channel computed tomography (MDCT) with three dimension printer device of the fused deposition modeling (FDM) techniques. The material is used a degradable plastic (poly lactic acid, PLA). Three-dimensional images of the short arm were obtained in the MDCT and then make the three-dimensional volume rendering. Three dimension volume rendering of the short arm is implemented as a tomography obtained in MDCT. Virtual mesh type cast model was output as three-dimensional images is designed based on the three-dimensional images of the short arm. As a results, the cast output by 3D printers were able to obtain excellent radiograph images than the conventional cast, and then it can decreased itching with unsanitary, and can break down easily to the cast. In conclusion, the proposed virtual mesh type cast output by 3D printers could be used as a basis for future three-dimensional printing cast productions and offered help to patients in the real life.