• Title/Summary/Keyword: Mesh Structure

Search Result 625, Processing Time 0.034 seconds

Numerical modelling for evaluating the TMD performance in an industrial chimney

  • Iban, A.L.;Brownjohn, J.M.W.;Belver, A.V.;Lopez-Reyes, P.M.;Koo, K.
    • Wind and Structures
    • /
    • v.17 no.3
    • /
    • pp.263-274
    • /
    • 2013
  • A numerical technique for fluid-structure interaction, which is based on the finite element method (FEM) and computational fluid dynamics (CFD), was developed for application to an industrial chimney equipped with a pendulum tuned mass damper (TMD). In order to solve the structural problem, a one-dimensional beam model (Navier-Bernoulli) was considered and, for the dynamical problem, the standard second-order Newmark method was used. Navier-Stokes equations for incompressible flow are solved in several horizontal planes to determine the pressure in the boundary of the corresponding cross-section of the chimney. Forces per unit length were obtained by integrating the pressure and are introduced in the structure using standard FEM interpolation techniques. For the fluid problem, a fractional step scheme based on a second order pressure splitting has been used. In each fluid plane, the displacements have been taken into account considering an Arbitrary Lagrangian Eulerian approach. The stabilization of convection and diffusion terms is achieved by means of quasi-static orthogonal subscales. For each period of time, the fluid problem was solved and the geometry of the mesh of each fluid plane is updated according to the structure displacements. Using this technique, along-wind and across-wind effects have been properly explained. The method was applied to an industrial chimney in three scenarios (with or without TMD and for different damping values) and for two wind speeds, showing different responses.

Reduction of train-induced vibrations on adjacent buildings

  • Hung, Hsiao-Hui;Kuo, Jenny;Yang, Yeong-Bin
    • Structural Engineering and Mechanics
    • /
    • v.11 no.5
    • /
    • pp.503-518
    • /
    • 2001
  • In this paper, the procedure for deriving an infinite element that is compatible with the quadrilateral Q8 element is first summarized. Enhanced by a self mesh-expansion procedure for generating the impedance matrices of different frequencies for the region extending to infinity, the infinite element is used to simulate the far field of the soil-structure system. The structure considered here is of the box type and the soils are either homogeneous or resting on a bedrock. Using the finite/infinite element approach, a parametric study is conducted to investigate the effect of open and in-filled trenches in reducing the structural vibration caused by a train passing nearby, which is simulated as a harmonic line load. The key parameters that dominate the performance of wave barriers in reducing the structural vibrations are identified. The results presented herein serve as a useful guideline for the design of open and in-filled trenches concerning wave reduction.

Efficient Vibration Analysis of Floors in A Shear Wall Building Structure (벽식구조물 바닥의 효율적인 진동해석)

  • 김현수;이동근;이선화
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.357-364
    • /
    • 2004
  • Recently, many high-rise apartment buildings using the box system composed of only reinforced connote walls and slabs, have been constructed In residential buildings such as apartments, vibrations occur from various sources and these vibrations transfer to neighboring residential units through walls and slabs. It is necessary to use a refined finite element model for an accurate vibration analysis of shear wall building structures. But it would take significant amount of computational time and memory if the entire building structure were subdivided into a finer mesh. Therefore an efficient analytical method, which has only translational DOFs perpendicular to walls or slabs by the matrix condensation technique, is proposed in this study to obtain accurate results in significantly reduced computational time.

  • PDF

Efficient Analysis of Biaxial Hollow Slab (2방향 중공슬래브의 효율적인 해석)

  • Park, Hyun-Jae;Kim, Hyun-Su;Park, Yong-Koo;Hwang, Hyun-Sik;Lee, Ki-Jang;Lee, Dong-Guen
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.362-367
    • /
    • 2008
  • Recently, the use of biaxial hollow slab is increased to reduce noise and vibration of the floor slab. Therefore, an efficient method for the vibration analysis of biaxial hollow slab is required to describe dynamic behavior of biaxial hollow slab. A finite element analysis is one of the method to analyze the biaxial hollow slab. It is necessary to use a refined finite element model for an accurate analysis of a floor slab with an effects of the hollow shape. But it would take a significant amount of computational time and memory if the entire building structure were subdivided into a finer mesh. Thus the proposed method uses equivalent plate model in this study. Dynamic analyses of an example structure subjected to walking loads were performed to verify the efficiency and accuracy of the proposed method.

  • PDF

A Study on the Fabrication of Porous Nickel Substrates Using Graphite Powder (흑연분말을 이용한 다공성 니켈지지체의 제조에 관한 연구)

  • 박성용;백지흠;조원일;조병원;윤경석
    • Journal of Surface Science and Engineering
    • /
    • v.28 no.5
    • /
    • pp.276-288
    • /
    • 1995
  • A nickel mesh and an expanded nickel sheet were used as a current collector for supporting active materials of cathode in rechargeable batteries, while a porous nickel substrate was extensively studied because of its 3-dimensional structure which has high capabilities for active materials and current collection. Optimum coating conditions were studied by SEM and two step d. c. constant current electrolysis for the graphite coating and electro-plated nickel on an urethane substance which was highly porous and 3-dimensional structure. The density and the porosity of nickel support obtained by using two step current density and 80 ppi urethane substance were 0.38∼0.40 g /㎤ and 94∼96%, respectively. It was possible to fabricate a highly porous and good packable nickel substrate using two step current density and surfactants at sulfamic acid nickel plating bath.

  • PDF

Damage Assessment and Establishment of Damage Index for Reinforced Concrete Column (철근콘크리트기둥의 손상지표 설정과 손상도 평가)

  • Youn, IL-Ro;Kwon, Yong-Gil
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.3
    • /
    • pp.149-155
    • /
    • 2007
  • Damage assessment and Damage index for RC members failed in flexure was investigated by using the nonlinear finite element analysis, included with nonlocal constitutive law, which is analyzed for the localization of the failure on the post-peak region. In the nonlcal constitutive law, The local strains obtained at gauss points were averaged over a particular length, i.e. characteristic length and it was used to evaluate the damage of RC column member. As the analysis results, The value of nonlocal strain shows less mesh sensibility. In the damage assessment, It was confirmed that evaluations of damage of RC member were able to use nonlocal compressive strain on a cover concrete and a core concrete of the member. Moreover it was confirmed that damage process for the statically indeterminate structure was able to evaluate the damage context of the component members of the structure.

  • PDF

A Study on the Structure of Turbulent Flow Fields According to the Operating Loads of Three-Dimensional Small-Size Axial Fan by Large Eddy Simulation (대규모와 모사에 의한 3차원 소형축류홴의 운전부하에 따른 난류유동장 구조에 대한 연구)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.19 no.5
    • /
    • pp.80-85
    • /
    • 2015
  • The unsteady-state, incompressible and three-dimensional large eddy simulation(LES) was carried out to analyze the structure of turbulent flow fields according to the operating loads of three-dimensional small-size axial fan(SSAF). LES shows the best prediction performance in comparison with any other Reynolds averaged Navier-Stokes(RANS) method because static pressure coefficients analysed by LES show a little bit larger than measurements including all flow coefficients. Also, it can be known that the wake of SSAF is divided into from axial flow to radial flow before and behind stall region according to the increase of static pressure through LES analysis.

A method of global-local analyses of structures involving local heterogeneities and propagating cracks

  • Kurumatani, Mao;Terada, Kenjiro
    • Structural Engineering and Mechanics
    • /
    • v.38 no.4
    • /
    • pp.529-547
    • /
    • 2011
  • This paper presents the global-local finite cover method (GL-FCM) that is capable of analyzing structures involving local heterogeneities and propagating cracks. The suggested method is composed of two techniques. One of them is the FCM, which is one of the PU-based generalized finite element methods, for the analysis of local cohesive crack growth. The mechanical behavior evaluated in local heterogeneous structures by the FCM is transferred to the overall (global) structure by the so-called mortar method. The other is a method of mesh superposition for hierarchical modeling, which enables us to evaluate the average stiffness by the analysis of local heterogeneous structures not subjected to crack propagation. Several numerical experiments are conducted to validate the accuracy of the proposed method. The capability and applicability of the proposed method is demonstrated in an illustrative numerical example, in which we predict the mechanical deterioration of a reinforced concrete (RC) structure, whose local regions are subjected to propagating cracks induced by reinforcement corrosion.

Characteristic Analysis of Band Width Based on Rugate Porous Silicon Containing Photonic Nanocrystal (광 결정의 나노 구조를 갖는 Rugate 다공성 실리콘의 반치폭 값에 대한 특성 분석)

  • Kwon, Yonghee;Han, Joungmin
    • Journal of Integrative Natural Science
    • /
    • v.2 no.1
    • /
    • pp.41-44
    • /
    • 2009
  • Photonic crystals containing multiple rugate structure are prepared by electrochemical etchings. Typically etched rugate PSi prepared in this study. Etching is carried out in a Teflon cell by using a two-electrode configuration with a Pt mesh counter electrode. They exhibit sharp photonic band gaps in the optical reflectivity spectrum. This reflectivity can be tuned to appear anywhere in the visible to near-infrared spectral range, depending on the programmed etch waveform. We study the method of full width half maxima and reflectivity index control by using amplitude.

  • PDF

A Study on the Modification of a Finite Element for Improving Shape Optimization (형상최적화 향상을 위한 유한요소의 개선에 관한 연구)

  • Sung, Jin-Il;Yoo, Jeong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.367-371
    • /
    • 2001
  • In the shape optimization based on the finite element method, the accuracy of finite element analysis of a given structure is important to determine the final shape. In case of a bending dominant problem, finite element solutions by the full integration scheme are not reliable because of the locking phenomenon. Furthermore, in the process of shape optimization, the mesh distortion is large due to the change of the structure outline: therefore, we cannot guarantee the accurate result unless the finite element itself is accurate. We approach to more accurate shape optimization to diminish these inaccuracies by improving the existing finite element. The shape optimization using the modified finite element is applied to a two-dimensional simple beam. Results show that the modified finite element have improved the optimization results.

  • PDF