• 제목/요약/키워드: Mesh Size

검색결과 960건 처리시간 0.025초

결정형 솔비톨의 형태 및 입자 크기가 무설탕 츄잉껌의 텍스쳐에 미치는 영향 (Effect of Morphology and Granule Size of Crystalline D-Sorbitol on Texture of Sugar-Free Chewing Gum)

  • 김상용;오덕근
    • 한국식품과학회지
    • /
    • 제29권5호
    • /
    • pp.987-991
    • /
    • 1997
  • 솔비톨의 형태와 입자크기가 무설탕 츄잉껌의 텍스쳐에 미치는 영향을 살펴보기 위하여 두 가지 형태인 치밀한 구조를 지닌 P-type과 듬성한 구조를 지닌 S-type의 솔비톨과 50 mesh와 100 mesh의 솔비톨을 사용하였다. 츄잉껌에 사용한 솔비톨 형태는 S-type이 P-type보다 더 유연하였고, 50 mesh의 솔비톨 보다 100 mesh가 더 유연하였다. 솔비톨의 강도는 S-type보다 P-type에서 컸으며 50 mesh보다 100 mesh에서 크게 나타났다. 이것은 덜 치밀한 구조를 지닌 솔비톨이 사용된 무설탕 츄잉껌이 높은 유연성과 낮은 강도를 보여 줌을 의미하고 입자의 크기가 작은 솔비톨을 사용할수록 무설탕 츄잉껌의 유연성과 강도가 증가됨을 의미한다. 그러므로 본 실험에서는 유연성이 높고 강도가 상대적으로 낮은 S-type의 솔비톨을 무설탕 츄잉껌의 원료로 선택하였다. 선택한 S-type 솔비톨이 함유된 무설탕 츄잉껌의 솔비톨의 입자크기에 따른 유연성과 강도를 측정한 결과 80 mesh 입자가 츄잉껌의 고체상 원료로 적합하였다. 80 mesh의 S-type 솔비톨이 함유된 무설탕 츄잉껌의 온도변화에 따른 유연성과 강도를 측정하였다. 실험 결과 온도가 증가할수록 무설탕 츄잉껌의 유연성은 증가하였으나 강도는 감소하였다.

  • PDF

거제·통영해역 스프링그물통발의 망목별 혼획 연구 (A study on the bycatches by mesh size of spring-net-pot in Geo-je & Tong-young waters of Korea)

  • 차봉진;조삼광;이건호
    • 수산해양기술연구
    • /
    • 제46권3호
    • /
    • pp.204-213
    • /
    • 2010
  • Test fishing was carried out using six kinds of different mesh sizes (20, 22, 24, 28, 35, 40mm) for springnet-pot to study bycatches according to the mesh size and catches survey was done for another one (mesh size : 22mm, entrance round : 350mm) in Geo-je & Tong-young waters of Korea. On the first sea experiment, it was thought that suitable mesh size of spring-net-pot catching conger-eel over 35cm with decreasing the catches of conger-eel (Conger myriaster) below 35cm was 24mm. On the second sea experiment, commercial catches were crabs (Charybdis bimaculata), octopus minor (Octopus variabilis) and others including conger-eel, and catches proportion was 60% of total catches weights. There was no big difference for the monthly catches. Self-consumption catches were 9 species including conger-eel below 35cm holding 50% of catches in the side of weights. There were 40% of bycatches for the catches weights and 63% for catches numbers in the 22mm mesh size of spring-net-pot having entrance round over 140mm. It showed that 50% of catches weights were discarded.

스프링그물통발의 입구 크기에 따른 붕장어 어획성능과 혼획 (Fishing capacity and bycatch on spring net pot for conger eel by entrance size)

  • 송대호;조삼광;차봉진
    • 수산해양기술연구
    • /
    • 제52권1호
    • /
    • pp.9-16
    • /
    • 2016
  • This study was conducted to analyze fishing capacity and bycatch by mesh size and entrance size of spring net pot conducted by water tank and field experiment. The water tank experiments were conducted by using traps with mesh size of 22 mm and entrance size of 120 mm and 140 mm, respectively in the water tank of NIFS. The field experiment was conducted using 5 kinds of spring net pot with mesh sizes of 20 mm, 22 mm, 35 mm and entrance size of 120 mm, 130 mm, 140 mm, 360 mm by coastal trap fishery vessel operating around the area of Geoje island. In the result of water tank experiments, the catch of conger eel was 1.5 times higher when using trap with entrance size of 140 mm than that of 120 mm. In the field experiment, when using same mesh size, the larger the entrance size, the higher amount of conger eel catch, bycatch and number of bycatch species. When using the same entrance size, the larger the mesh size, the lower amount of conger eel catch and number of bycatch species, whereas the amount of bycatch showed increasing trend.

측편형어류에 대한 트롤 끝자루의 망목선택성 (The Mesh Selectivity of Trawl Cod-end for the Compressed From Fishes)

  • 정순범;이주희;김삼곤
    • 수산해양기술연구
    • /
    • 제29권4호
    • /
    • pp.247-259
    • /
    • 1993
  • The fishing experiment was carried out by the training ship Saebada in order to analyse the mesh selectivity for trawl cod-end, in the Southern Korea Sea and the East China Sea from June. 1991 through August, 1992. The trawl cod-end used in this experiment has the trouser type of cod-end with cover net. and the mesh selectivity was examined for the five kinds of the opening of mesh in its cod-end part. A total of 163 hauls, of which having mesh size 51.2mm ; A 89, 70.2mm ; B 54, 77.6mm ; C 55, 88.0mm ; D 52 and 111.3mm ; E 20 were used respectively. Selection curves and selection parameters were calculated by using a logistic function, S=1/(1+exp super(-(aL+b)) ). The mesh election master curves were estimated by S=1/(1+exp super(-[a(L/M)+$\beta$]) ). and the optimum mesh size were calculated with (L/M) sub(50) of master curve. In these cases 'a' and '$\alpha$' are slope, 'b' and '$\beta$' are intercept. 'L' is body length of the target species of fishes, 'M' is the mesh size, and 'S' denotes mesh selectivity. In this report, the four species of compressed form fishes were taken analized according to fish shape, and 'S' denotes mesh selectivity. In this report, the four species of compressed form fishes were taken analized according to fish shape, and the results obtained are summarized as follows: 1. Red seabream Pagrus major(Temminct et Schlegel) and yellow porgy Dentex tumifrons(Temminct et Schlegel) ; Selection rate in each mesh size of A, B, C, D and E were 99.7%, 97.5%, 91.4%, 76.7% and 57.8% respectively. Selection parameters 'a' and 'b' of mesh sizes C, D and E were 2.65 and -28.62, 4.40 and -77.73, 2.31 and -46.99, and their selection factors were 1.39, 2.10, 1.83 respectively. Selection parameters of master curve '$\alpha$' and '$\beta$' were 3.05 and -5.65 respectively, and (L/M) sub(50) was 1.85. The optimum mesh size of Red seabream was 141mm. 2. Filefish Thamnaconus modestus (Gunther) ; Selection rate in each mesh size of A, B, C, D and E were 99.6%, 98.3%, 91.2%, 80.0% and 48.6% respectively. Selection parameters 'a' and 'b' of mesh sizes C, D and E were 5.82 and -55.10, 2.92 and -36.90, 3.91 and -63.09, and their selection factors were 1.35, 1.44, 1.45 respectively. Selection parameters of master curve '$\alpha$' and '$\beta$' were 3.02 and -4.32 respectively, and (L/M) sub(50) was 1.43. The optimum mesh size was 129mm. 3. Target dory Zeus faber Valenciennes ; Selection rate in each mesh size of A, B, C, D and E were 99.7%, 100%, 83.2%, 91.6% and 65.0% respectively. Selection parameters 'a' and 'b' of mesh sizes C, D and E were 3.85 and -32.46, 4.19 and -57.38, 2.45 and -40.03, and their selection factors were 1.09, 1.56, 1.47 respectively. Selection parameters of master curve '$\alpha$' and '$\beta$' were 2.64 and -3.53 respectively, and (L/M) sub(50) was 1.34. The optimum mesh size was 127mm. 4. Butterfish Psenopsis anomala (Temminct et Schlegel) ; Selection rate in each mesh size of A, B, C, D and E were 99.2%, 34.1%, 46.5%, 14.3% and 2.4% respectively. Selection parameters 'a' and 'b' of mesh sizes B, C and D were 5.35 and -71.70, 5.07 and -69.25, 3.31 and -62.06 and their selection factors were 1.91, 1.75, 2.13 respectively. Selection parameters of master curve '$\alpha$' and '$\beta$' were 3.16 and -6.24 respectively, and (L/M) sub(50) was 1.98. The optimum mesh size was 71mm.

  • PDF

Effective Partitioning of Static Global Buses for Small Processor Arrays

  • Matsumae, Susumu
    • Journal of Information Processing Systems
    • /
    • 제7권1호
    • /
    • pp.85-92
    • /
    • 2011
  • This paper shows an effective partitioning of static global row/column buses for tightly coupled 2D mesh-connected small processor arrays ("mesh", for short). With additional O(n/m (n/m + log m)) time slowdown, it enables the mesh of size $m{\times}m$ with static row/column buses to simulate the mesh of the larger size $n{\times}n$ with reconfigurable row/column buses ($m{\leq}n$). This means that if a problem can be solved in O(T) time by the mesh of size $n{\times}n$ with reconfigurable buses, then the same problem can be solved in O(Tn/m (n/m + log m)) time on the mesh of a smaller size $m{\times}m$ without a reconfigurable function. This time-cost is optimal when the relation $n{\geq}m$ log m holds (e.g., m = $n^{1-\varepsilon}$ for $\varepsilon$ > 0).

다수어종에 대한 적정어획강목의 추정 (The Estimation of Optimum Harvesting Mesh Size for Multiple Species of Fish)

  • 김삼곤;이주희;박정식
    • 수산해양기술연구
    • /
    • 제30권2호
    • /
    • pp.86-96
    • /
    • 1994
  • In order to estimate the optimum harvesting mesh size of multispecies, the 24 species of catching data which were taken by fishing trial of trawl gear in Korean Southern Coast and East China Sea during 1991-1993 year were grouped and divided by the Cluster analysis method, considering first maturity length and body width, body height, body girth based on the first maturity length. With the same method, the above groups were subdivided by the potential escape such as possible escape index, range factor and selection factor. In case of the species devoid of selection parameters, these species were first subdivided by the use of possible escape index and length range factor. Next, the optimum harvesting mesh size of multispecies was properly classified according to the optimal mesh size of a fish estimated by first maturity length against selection factor. The results obtained are summarized as follows: 1. Each optimum harvesting mesh size of Psenopsis anomala, Priacanthus macra-canthus, Trachurus japonicus, Argyrosomus argentatus was 71.1-79.5mm, and Saurida undosquamis was 65.5mm. 2. Each optimum harvesting mesh size of Scomber japonicus, Pseudosciaena crosea, Pseudosciaena Polyactis, Sebastes thompsoni, Doderleinia berycoides was 78.5-85.6mm, and Bembras japonicus, Sphyraena pinguis was 48.4-51.3mm. 3. Each optimum harvesting mesh size of Zeus faber, Pampus argenteus, Zenopsis nebulosan was 118.4-124.1mm, and Caranx equula was 91.4mm, and Thamnaconus modestus was 131.2mm, and Pagrus major was 149.4mm. 4. Each optimum harvesting mesh size of Upeneus bensasi, Callanthias japonicus, Sardinops melanosticata, Konosirus punctatus was 36.8-42.8mm, and Acropoma japonicum was 21.2mm, and Apogon lineatus was 26.3mm.

  • PDF

가거도 인근해역 참조기(Larimichthys polyactis) 유자망의 망목선택성 (Mesh Selectivity of Drift Gill Net for Yellow Croaker, Larimichthys polyactis, in the Coastal Sea of Gageo-do)

  • 김성훈;박성욱;배재현;김영혜
    • 한국수산과학회지
    • /
    • 제42권5호
    • /
    • pp.518-522
    • /
    • 2009
  • The mesh selectivity of drift gill net for yellow croaker (Larimichthys polyactis) was examined in field experiments with six different net mesh size (40, 45, 50, 55, 60 and 65 mm) from April to December, 2008 in the northwestern coastal waters of Gageo-do, Korea. The total catch of 8,091 consisted of yellow croaker (n=7,574; 89.5% of total catch), common mackerel (n=162; 4.8%) and other species (n=355; 5.8%). The selectivity curve for the small size yellow croaker was fit by Kitahara's method to the polynomial equation S(R)=exp{($-0.552R^3$+$4.927R^2$-11.591R+9.320)-6.717}. The optimal mesh size for 50% retention for minimum landing size(191mm) of yellow croaker was estimated as 51.1 mm. This is very similar to the current drift net mesh size used in Gageo-do.

네트 망목 크기가 Acartia steueri (Copepoda: Calanoida)의 생체량 추정에 미치는 영향 (Effect of Mesh Size of Net on Biomass Estimation of Acartia steueri (Copepoda: Calanoida))

  • 강형구;강용주
    • 한국수산과학회지
    • /
    • 제35권4호
    • /
    • pp.445-450
    • /
    • 2002
  • A series of 29 sampling with a 330 ${\mu}$m and a 64 ${\mu}$m mesh size of nets was conducted at a fixed station in Ilkwang Bay, southeast cost of Korea, from Oct, 2, 1991 to Oct. 10, 1992, to investigate the effects of mesh size of nets on biomass estimation of copepod Acartia steueri. The catch of copepodite and nauplius stages of A. steueli taken by two nets with different mesh size was different, showing that all developmental stages of A. steueri were retained on the 64 ${\mu}$m mesh net, but only $\geq$stage 4 copepodite were caught by the 330 ${\mu}$m mesh net. Abundance and biomass in each developmental stage estimated with the 64 ${\mu}$m mesh net were significantly higher than those of the 330 ${\mu}$m mesh net, except for adult female and stage 5 copepodite in female. The body length as well as the body width is likely to affect the catch of the nets. The mean biomass of A. steueli estimated with the traditional 330 ${\mu}$m net was 2.8 times lower than the value obtained with the 64 ${\mu}$m mesh net. However, the seasonal patterns of the biomass were comparable. These results suggest that accurate sampling strategr of the entire copepods assemblage including nauplii and copepodites are essential when estimating the abundance and biomass of copepods for the better understanding of the role of copepods in marine ecosystem.

A Study on the Determination of Closing Level for Finite Element Analysis of Fatigue Crack Closure

  • Choi, Hyeon-Chang
    • Journal of Mechanical Science and Technology
    • /
    • 제14권4호
    • /
    • pp.401-407
    • /
    • 2000
  • An elastic-plastic finite element analysis is performed to investigate detailed closure behavior of fatigue cracks and the numerical results are compared with experimental results. The finite element analysis performed under plane stress using 4-node isoparametric elements can predict fatigue crack closure behavior. The mesh of constant element size along crack surface can not predict the opening level of fatigue crack. The crack opening level for the constant mesh size increases linearly from initial crack growth. The crack opening level for variable mesh size, is almost flat after crack tip has passed the monotonic plastic zone. The prediction of crack opening level using the variable mesh size proportioning the reversed plastic zone size with the opening stress intensity factors presents a good agreement with the experimental data regardless of stress ratios.

  • PDF

SELECT 모델을 이용한 트롤 비교 시험조업법에 의한 망목 선택성에 관한 연구 (A study on the mesh size selectivity by alternate haul method of trawl using the SELECT model)

  • 김성훈;김형석;백세나;김재형;김병관
    • 수산해양기술연구
    • /
    • 제59권2호
    • /
    • pp.99-109
    • /
    • 2023
  • In this study, a comparative test operation was conducted through the alternate haul method to examine the selectivity of the four mesh sizes (60 mm, 90 mm, 110 mm, and 130 mm) of the trawl codend. The selectivity was analyzed using the SELECT model considering the fishing efficiency (split parameter) of each fishing gear in the comparative test fishing operation in the trawl and the maximum likelihood method for parameter estimation. A selectivity master curve was estimated for several mesh sizes using the extended-SELECT model. As a result of analyzing the selectivity for silver croaker based on the results of three times hauls for each experimental gear, it was found that the size of the fish caught increased as the size of the mesh size increased. When the selectivity for each mesh size analyzed by the SELECT model considering the split ratio was evaluated based on the size of the AIC value, the estimated split model was superior to the equal split model. Based on the master curve, the 50% selection length value was 2.893, which was estimated to be 136 mm based on the mesh size of 60 mm. In some selectivity models, there was a large deviance between observed and theoretical values due to the non-uniformity of the distribution of fished length classes. As a result, it is considered that appropriate sea trials and selectivity evaluation methods with high reliability should be applied to present trawl fishery resource management methods.