• Title/Summary/Keyword: Mesh Compression

Search Result 114, Processing Time 0.026 seconds

Analysis for Characteristics Method on Wind Pressure of Trains Crossing in Tunnel (터널내 교행 열차의 풍압에 대한 특성법 해석)

  • Nam, Seong-Won
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.6
    • /
    • pp.454-459
    • /
    • 2013
  • Pressure waves are generated and propagate in a tunnel when train enters tunnel high speed. A compression wave due to the entry of train head propagates along the tunnel and is reflected at tunnel exit as an expansion wave. An expansion wave due to the entry of the train tail propagates along the tunnel and is reflected at tunnel exit as a compression wave. These pressure waves are repeatedly propagated and reflected at the tunnel entrance and exit. Severe pressure changes causes ear-discomfort for passengers in the cabin and micro pressure waves around the tunnel exit. It is necessary to analyze the transient pressure phenomena in tunnels qualitatively and quantitatively, because pressure change rate is considered as one of the major design parameters for optimal tunnel cross sectional area and repeated fatigue force on car body. In this study, we developed a characteristics method based on a fixed mesh system and boundary conditions for crossing trains and analyzed this system using an X-t diagram. The results of the simulation show that offsetting of pressure waves occurs for special entry conditions of a crossing train.

Characteristics Method Analysis of Wind Pressure of Train Running in Tunnel (터널을 주행하는 열차의 풍압에 대한 특성해법 해석)

  • Nam, Seong-Won;Kwon, Hyeok-Bin;Yun, Su-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.5
    • /
    • pp.436-441
    • /
    • 2012
  • Pressure waves are generated and propagate in tunnel when train enters a tunnel with high speed. Compression wave due to the entry of train head propagates along the tunnel and is reflected at tunnel exit as expansion wave. While expansion wave due to the entry of train tail propagates along the tunnel and is reflected at tunnel exit as compression wave. These pressure waves are repeatedly propagated and reflected at tunnel entrance and exit. Severe pressure change per second causes ear-discomfort for passengers in cabin and micro pressure wave around tunnel exit. It is necessary to analyze the transient pressure phenomena in tunnel qualitatively and quantitatively, because pressure change rate is considered as one of major design parameters for an optimal tunnel cross sectional area and the repeated fatigue force on car body. In this study, we developed the characteristics method analysis based on fixed mesh system and compared with the results of real train test. The results of simulation agreed with that of experiment.

Modelling reinforced concrete beams under mixed shear-tension failure with different continuous FE approaches

  • Marzec, Ireneusz;Skarzynski, Lukasz;Bobinski, Jerzy;Tejchman, Jacek
    • Computers and Concrete
    • /
    • v.12 no.5
    • /
    • pp.585-612
    • /
    • 2013
  • The paper presents quasi-static numerical simulations of the behaviour of short reinforced concrete beams without shear reinforcement under mixed shear-tension failure using the FEM and four various constitutive continuum models for concrete. First, an isotropic elasto-plastic model with a Drucker-Prager criterion defined in compression and with a Rankine criterion defined in tension was used. Next, an anisotropic smeared crack and isotropic damage model were applied. Finally, an elasto-plastic-damage model was used. To ensure mesh-independent FE results, to describe strain localization in concrete and to capture a deterministic size effect, all models were enhanced in a softening regime by a characteristic length of micro-structure by means of a non-local theory. Bond-slip between concrete and reinforcement was considered. The numerical results were directly compared with the corresponding laboratory tests performed by Walraven and Lehwalter (1994). The advantages and disadvantages of enhanced models to model the reinforced concrete behaviour were outlined.

A Multithreaded Implementation of HEVC Intra Prediction Algorithm for a Photovoltaic Monitoring System

  • Choi, Yung-Ho;Ahn, Hyung-Keun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.5
    • /
    • pp.256-261
    • /
    • 2012
  • Recently, many photovoltaic systems (PV systems) including solar parks and PV farms have been built to prepare for the post fossil fuel era. To investigate the degradation process of the PV systems and thus, efficiently operate PV systems, there is a need to visually monitor PV systems in the range of infrared ray through the Internet. For efficient visual monitoring, this paper explores a multithreaded implementation of a recently developed HEVC standard whose compression efficiency is almost two times higher than H.264. For an efficient parallel implementation under a meshbased 64 multicore system, this work takes into account various design choices which can solve potential problems of a two-dimensional interconnects-based 64 multicore system. These problems may have not occurred in a small-scale multicore system based on a simple bus network. Through extensive evaluation, this paper shows that, for an efficient multithreaded implementation of HEVC intra prediction in a mesh-based multicore system, much effort needs to be made to optimize communications among processing cores. Thus, this work provides three design choices regarding communications, i.e., main thread core location, cache home policy, and maximum coding unit size. These design choices are shown to improve the overall parallel performance of the HEVC intra prediction algorithm by up to 42%, achieving a 7 times higher speed-up.

Efficient Data Compression and Decompression of Stereo Video by using Interative 2D Warping (반복적 2D 워핑을 이용한 효율적인 스테레오 비디오 데이터 압축 및 복원)

  • Park, Il-Kwon;Hye, Ran-Byun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.117-120
    • /
    • 2008
  • 본 논문은 스테레오 비디오 데이터 압축 및 복원을 위한 그리드(Grid) 기반 2D 워핑 방법을 제안한다. 스테레오 비디오에 대한 데이터 표현 방법으로 깊이지도 및 매쉬(mesh)를 이용한 방법이 주로 사용되어 왔으며 매쉬를 이용한 방법은 두 영상간의 매칭되는 노드를 이용하여 데이터 압축 효율을 높일 수 있다. 그러나, 두 영상에서 매칭되는 노드의 위치를 찾는 것은 매우 어려운 일일 뿐만 아니라 매쉬에 의해서 워핑된 영상과 목적이 되는 스테레오 영상의 좌측 또는 우측 영상간의 왜곡이 불가피하다. 따라서 이러한 왜곡을 보정하기 위하여 잔여영상(Residual image) 정보를 추가로 요구하게 된다.제안된 논문은 이러한 잔여영상 정보를 최소화 하기 위하여 반복적으로 2D워핑을 수행하며 최적화된 워핑 영상을 생성함으로써 목적영상과의 오차를 최소로 유지하여 추가정보인 잔여 영상의 데이터 용량을 최소화 한다. 전체영상에 대하여 2D워핑을 수행하며 각각의 노드를 변경하는 것은 많은 비용을 감수해야 하기 때문에 오차영역에 대하여 지역단위로 분할하고 단계적으로 최적화를 이루는 분할정복 방법을 사용하였다. 본 논문의 실험에서는 스테레오 영상에 대하여 각각의 신호대 잡음비(PSNR)를 통해 제안한 방법의 품질을 평가하였을 뿐만 아니라 기존의 메쉬 기반한 방법과 깊이지도를 이용한 방법과의 데이터량을 비교하였다. 실험결과를 통하여 제안한 방법의 데이터 압축의 효율성 및 품질의 우수성을 확인하였다.

  • PDF

Analysis of In-cylinder Flow in a Miller Cycle Engine with Variable IVC for HEV (밀러사이클 적용 HEV 엔진 실린더의 가변흡기밸브 닫힘각에 따른 실린더내 유동해석)

  • Kim, Sangmyeong;Sung, Gisu;Lee, Jinwook
    • Journal of ILASS-Korea
    • /
    • v.19 no.1
    • /
    • pp.25-32
    • /
    • 2014
  • For reduction of $CO_2$ emission emitted from combustion engine, the developed nations have been focused on R&D of hybrid electric vehicle. Further more, many automobile companies are researching on various techniques related to engine used in HEV to enhance fuel economy. One of key techniques is miller cycle that control a valve timing to reduce compression stroke for saving energy and increase expansion stroke for high power. In this study, it was investigated the in-cylinder flow characteristics of miller cycle with variable intake valve timing by using the ANSYS simulation code. For simulation, the key analytic parameter defined as intake valve closing timing and cam profile. As main results, it was shown that LIVC cause a lower pressure inside cylinder and had better control turbulence intensity.

Actual microstructure-based numerical method for mesomechanics of concrete

  • Chena, S.;Yueb, Z.Q.;Kwan, A.K.H.
    • Computers and Concrete
    • /
    • v.12 no.1
    • /
    • pp.1-18
    • /
    • 2013
  • This paper presents an actual microstructure-based numerical method to investigate the mechanical properties of concrete at mesoscopic level. Digital image processing technique is used to capture the concrete surface image and generate the actual 3-phase microstructure of the concrete, which consists of aggregate, matrix and interfacial transition zones. The microstructure so generated is then transformed into a mesh or grid for numerical analysis. A finite difference code FLAC2D is used for the numerical analysis to simulate the mechanical responses and failure patterns of the concrete. Several cases of concrete with different degrees of material heterogeneity and under different compression loading conditions have been analysed. From the numerical results, the effects of the internal material heterogeneities as well as the external confining stresses are studied. It is shown that the material heterogeneities arising from the presence of different phases and the existence of interfacial transition zones have great influence on the overall mechanical behaviour of concrete and that the numerically simulated behaviour of concrete with or without confining stresses applied agrees quite well with the general observations reported in the literature.

Analysis of Compressive Characteristics of Wire-woven Bulk Kagome (Wire-woven Bulk Kagome의 압축 특성 분석)

  • Lee, Byung-Kon;Choi, Ji-Eun;Kang, Ki-Ju;Jeon, In-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.1
    • /
    • pp.70-76
    • /
    • 2008
  • Periodic cellular metals (PCMs) are actively being investigated because of their excellent specific strength and stiffness, and multi-functionality such as a heat disperse structure bearing external loading. The Kagome truss PCM has been proved that it has higher resistance to plastic buckling and lower anisotropy than other truss PCMs. In this paper, the out-of-plane compressive responses of the WBK specimens have been measured, theoretically predicted and numerically analyzed. Three specimens of two-layered WBK are fabricated and tested for measuring the responses. The peak stress of compressive behavior and effective elastic modulus are predicted based on the equilibrium equation and elastic energy conservation. Moreover, the structure of the specimen is modeled using the commercial mesh generation code, PATRAN and the finite element analysis for the model under the compression is carried out using the commercial FE code, ABAQUS. Finally, the obtained results are compared with each other to analyze the compressive characteristics of Wire-woven Bulk Kagome (WBK).

Material Nonlinear Finite Element Analysis of Reinforced Concrete Structures (재료비선형성을 고려한 R/C 구조물의 유한요소해석)

  • Choi, Chang Koon;Kwak, Hyo Gyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.31-38
    • /
    • 1989
  • This paper concentrates on the analysis of reinforced concrete(R/C) structures subjected to monotonic loading, from zero to ultimate loads. Tensile cracking, the nonlinear stress-strain relationship for concrete and reinforcement are taken into account the concrete is assumed to be elastic in tension region and elasto-hardening plastic in compression region. The Kupfer's failure criteria and associated flow rule are adopted to govern the plastic behavior of the concrete. The reinforcing bar is considered as a elasto-hardening platic material. The tension stiffening effect of the concrete between cracks is also considered. The numerical error depends on the used finite element mesh size is reduced by correcting the slope of strain softening region of the concrete according to the developed energy criteria.

  • PDF

Effects of Injection Pressure and Injection Angle on Spray Characteristics in Loop Scavenged Type 2-stroke Engines (루프소기형태의 2행정기관에서 분사압력 및 분사각도에 따른 분무특성 연구)

  • Chae, S.;Ryou, H. S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.165-176
    • /
    • 1996
  • The flow field and spray characteristics for loop scavenged type 2stroke engine having pancake shape was numerically computed using KIVA-Ⅱ code. The cylinder has 1intake port, 2side intake ports and 1exhaust port with induced flow angle 25 deg. In engine calculation, the chop techniques is used to strip or add planes of cells across the mesh adjacent to the TDC and the BDC(ports parts) for preventing the demand of exceed time during the computation, providing a control on cell height in the squish region. The modified turbulent model including the consideration of the compressibility effect due to the compression and expansion of piston was also used. The case of 25 deg.(injection angle) which is opposite to scavenging flow direction shows better the distribution of droplets and the evaporation rate of droplets compared to other cases(0 deg., - 25 deg.). When injection pressure was increased, the spray tip penetration became longer. When injection pressure was increased, the interaction between the upward gas velocity and spray droplets strongly cause. Thus the breakup of droplets is strongly occurred and the evaporation rate of droplets was found to be better.

  • PDF