• Title/Summary/Keyword: Mercury speciation

Search Result 10, Processing Time 0.018 seconds

Preconcentration and Speciation of Trace Mercury Compounds in Water Sample Using Dithizonates Extraction and Reverse Phase Liquid Chromatography (디티존 착물 추출과 역상 액체 크로마토그래피를 이용한 물시료 중의 미량 수은 화합물의 농축 및 화학종의 분리)

  • Suh, Jung-Ki;Cho, Kyung-Haeng;Lee, Sang-Haak
    • Analytical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.81-88
    • /
    • 2000
  • A rapid preconcentration method was developed for the speciation of the trace mercury compounds in water sample. The mercury compounds were extracted and preconcentrated simply as their dithizone complexes by passing through the dithizone impregnated ultra-high molecular weight polyethylene (UHMWPE) membrane solvent inlet filter following sanification in methanol solvent. The concentrated dithizonates were separated by liquid chromatography on a $C_{18}$ column. Complete resolution was obtained between methyl-, ethyl-, phenyl-, and inorganic mercury with a mobile phase of 0.05 M acetate buffer (pH=4)/THF/methanol(3:5:2). The separnted mercury chelates were detected by spectrophotometrically at 475 nm. The proposed method was successfully applied to the speciation of mercury compounds in waste water with detection limit at the subnanogram/mL level.

  • PDF

Fate and Transport of Mercury in Environmental Media and Human Exposure

  • Kim, Moon-Kyung;Zoh, Kyung-Duk
    • Journal of Preventive Medicine and Public Health
    • /
    • v.45 no.6
    • /
    • pp.335-343
    • /
    • 2012
  • Mercury is emitted to the atmosphere from various natural and anthropogenic sources, and degrades with difficulty in the environment. Mercury exists as various species, mainly elemental ($Hg^0$) and divalent ($Hg^{2+}$) mercury depending on its oxidation states in air and water. Mercury emitted to the atmosphere can be deposited into aqueous environments by wet and dry depositions, and some can be re-emitted into the atmosphere. The deposited mercury species, mainly $Hg^{2+}$, can react with various organic compounds in water and sediment by biotic reactions mediated by sulfur-reducing bacteria, and abiotic reactions mediated by sunlight photolysis, resulting in conversion into organic mercury such as methylmercury (MeHg). MeHg can be bioaccumulated through the food web in the ecosystem, finally exposing humans who consume fish. For a better understanding of how humans are exposed to mercury in the environment, this review paper summarizes the mechanisms of emission, fate and transport, speciation chemistry, bioaccumulation, levels of contamination in environmental media, and finally exposure assessment of humans.

A Study on Emission Characteristics of Mercury from Coal Combustion at a Lab-scale Furnace (실험용 연소로에서 석탄 연소 시 발생하는 수은 배출특성 연구)

  • Park, Kyu-Shik;Lee, Ju-Hyoung;Kim, Jeong-Hun;Lee, Sang-Hyeob;Seo, Yong-Chil
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.2
    • /
    • pp.238-248
    • /
    • 2008
  • This study investigated mercury emission at various combustion conditions and analyzed mercury species in flue gas from coal combustion at a laboratory scale furnace in coal. The results of this study can be used to predict and to assess mercury emission at coal boilers and power plants. The coal used in the plants generally contains about $0.02{\sim}0.28\;mg$ of mercury per kg. Bituminous and anthracite coal used for the experiment contained 0.049 and 0.297 mg/kg of mercury, respectively. Mercury emissions during coal combustion at temperatures range of $600^{\circ}C$ to $1,400^{\circ}C$ was measured and analysed using Ontario Hydro method; the speciation changes were also observed in mercury emissions. The results showed higher fraction of elemental mercury than that of oxidised mercury at most temperatures tested in this experiment. The fraction of elemental mercury was lower in combustion of anthracite coal than in bituminous combustion. As expected, equilibrium calculations and real power plants data showed good similarity. The distribution of particle size in flue gas had the higher peak in size above $2.5\;{\mu}m$. However the peak of mercury enrichment in dust was at $0.3\;{\mu}m$, which could be easily emitted into atmosphere without filtration in combustion system. When the CEA(Chemical equilibrium and Application) code was used for combustion equilibrium calculation, Cl was found to be the important component effecting mercury oxidation, especially at the lower temperatures under $900^{\circ}C$.

Mercury recovery from aqueous solutions by polymer-enhanced ultrafiltration using a sulfate derivative of chitosan

  • Carreon, Jose;Saucedo, Imelda;Navarro, Ricardo;Maldonado, Maria;Guerra, Ricardo;Guibal, Eric
    • Membrane and Water Treatment
    • /
    • v.1 no.4
    • /
    • pp.231-251
    • /
    • 2010
  • The sulfatation of chitosan, by reaction with chlorosulfonic acid under controlled conditions, allowed increasing the pH range of chitosan solubility. The biopolymer was characterized using FTIR and $^{13}C$-NMR spectroscopy, elemental analysis and titration analysis and it was tested for mercury recovery by polymer enhanced ultrafiltration (PEUF). In slightly alkaline conditions (i.e., pH 8) mercury recovery was possible and at saturation of the polymer the molar ratio $-NH_2$/Hg(II) tended to 2.6. Polymer recycling was possible changing the pH to 2 and the polymer was reused for 3 cycles maintaining high metal recovery. The presence of chloride ions influences metal speciation and affinity for the polymer and "playing" with metal speciation allowed using the PEUF process for mercury separation from cadmium; at pH 11 the formation of hydroxo-complexes of Hg(II) limits it retention. Cake formation reveals the predominant controlling step for permeation flux.

Performance of Removal Efficiency for Mercury Compounds using Hybrid Filter System in a Coal-fired Power Plant (석탄화력발전시설에서의 하이브리드 집진기 적용 시 수은화합물 제어성능 평가)

  • Sung, Jin-Ho;Jang, Ha-Na;Back, Seung-Ki;Jung, Bup-Muk;Seo, Yong-Chil;Kang, Yeon-Suk;Lee, Chul-Kyu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.3
    • /
    • pp.261-269
    • /
    • 2014
  • This study focused on the performance of the newly developed hybrid filter system to capture fine particulate matter and mercury compounds in a coal-fired power plant. The hybrid filter system combining bag-filter and electrostatic precipitator had been developed to remove fine particulate matter. However, it would have a good performance to control mercury compounds as well. In Hybrid filter capture system, the total removal efficiency of total mercury compounds consisting of particulate mercury ($Hg_p$), oxidized mercury ($Hg^{2+}$), and elemental mercury ($Hg^0$) was 66.2%. The speciation of mercury compounds at inlet and outlet of Hybrid filter capture system were 1.3% and 0% of $Hg_p$, 85.2% and 68.1% of $Hg^0$, and 13.5% and 31.9% of $Hg^{2+}$, respectively. In hybrid filter capture system injected with 100% of flue-gas, the removal efficiency of total mercury was calculated to increase to 93.5%.

A Study on the Development of the Mercury Emission Factor from Coal-fired Power Plant (석탄 화력발전시설에서의 수은 배출계수 개발에 관한 연구)

  • Kim, Hyung-Chun;Park, Jung-Min;Jang, Kee-Won;Lee, Sang-Bo;Jung, No-El;Song, Deok-Jong;Hong, Ji-Hyung;Lee, Suk-Jo;Kim, Sang-Kyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.2
    • /
    • pp.172-181
    • /
    • 2012
  • Mercury is one of the most hazardous air pollutants. Recently, mercury has been a concern in domestic and overseas because it has lethal toxicity, long distance transport, persistence and bioaccumulation in the environment. Stationary combustion sources such as coal-fired power plants, waste incinerators, and cement kilns are the major sources of mercury emissions. The objectives of this study were to measure the concentration for mercury from coal-fired power plants and to calculate emission factor to estimate its emission. The results showed that the mercury concentrations in the flue gas were 1.63-3.03 mg/$Sm^3$ in anthracite-fired power plants (average 2.32 mg/$Sm^3$) and 1.95-3.33 mg/$Sm^3$ in bituminous-fired power plants (average 2.6 mg/$Sm^3$). Mercury emission factor was estimated as 25.74 mg/ton for anthracite-fired power plants and 12.48 mg/ton for bituminous-fired power plants. Because actual measurements are limited in quantity, it is desirable to refine our estimates by extending the actual measurements.

Characterization of Heavy Metals Including Mercury and Fine Particulate Emitted from a Circulating Fluidized Bed Power Plant Firing Anthracite Coals (무연탄 순환유동층 발전소로부터 배출되는 수은을 포함한 중금속 및 미세분진의 배출 특성)

  • Kim, Jeong-Hun;Yoo, Jong-Ik;Seo, Yong-Chil
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.268-274
    • /
    • 2010
  • Emission of heavy metals as hazardous air pollutants has been focused with tightening regulatory limits due to their hazardousness. Measurements and characteristic investigations of heavy metals emitted from a commercial power plant burning anthracite coal have been carried out. The plant consists of a circulating fluidized bed combustor, a cyclone, a boiler and an electrostatic precipitator(ESP) in series. Dust and gaseous samples were collected to measure main heavy metals including gaseous mercury before ESP and at stack. Dust emissions as total particulate matter (TPM), PM-10 and PM-2.5 at inlet of ESP were very high with 23,274, 9,555 and $7,790mg/Sm^3$, respectively, as expected, which is much higher than those from pulverized coal power plants. However TPM at stack was less than $0.16mg/Sm^3$, due to high dust removal efficiency by ESP. Similarly heavy metals emission showed high collection efficiency across ESP. From particle size distribution and metal enrichment in sizes, several metal concentrations could be correlated with particle size showing more enrichment in smaller particles. Mercury unlike other solid metals behaved differently by emitting as gaseous state due to high volatility. Removal of mercury was quite less than other metals due to it's volatility, which was 68% only. Across ESP, speciation change of mercury from elemental to oxidized was clearly shown so that elemental mercury was half of total mercury at stack unlike other coal power plants which equipped wet a scrubber.