• Title/Summary/Keyword: Mercury ion monitoring

Search Result 2, Processing Time 0.015 seconds

Mercury Ion Monitoring in Mercury Plating Bath by Anodic Stripping Voltammetry

  • Park, Mijung;Yoon, Sumi;Shin, Woonsup
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.241-244
    • /
    • 2016
  • Anodic stripping voltammetry (ASV) is successfully applied in mM level detection of mercury ion in an electroplating bath which is currently used in preparing a cathodic electrolyzer. Glassy carbon electrode is used for the detection and the optimum condition obtained is 10 s deposition at −1.4 V vs. Ag/AgCl and stripping by scanning from −1.4 to +0.4 V vs Ag/AgCl at 50 mV/s. By applying the method, the mercury ion concentration in the electroplating bath could be successfully monitored during the plating.

Real-time Voltammetric Assay of Cadmium Ions in Plant Tissue and Fish Brain Core

  • Ly, Suw-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1613-1617
    • /
    • 2006
  • Optimum analytical conditions for cyclic voltammetry (CV) and square wave (SW) stripping voltammetry were determined using mercury-mixed carbon nanotube paste electrode (PE). The results approached the microgram working ranges of SW: 10.0-80.0 $ugL^{-1}$ and CV: 100-700 $ugL^{-1}$ Cd (II); working conditions of 300-Hz frequency, 100 mV amplitude, 1.6 V accumulation potential, 400 sec accumulation time, and 40 mV increment potential. First, analysis was performed through direct assay of cadmium ions deep into the fishs brain core and plant tissue in real time with a preconcentration time of 400 sec. The relative standard deviation of 10.0 $mgL^{-1}$ Cd (II) observed was 0.064 (n = 12) at optimum conditions. The low detection limit (S/N) was set at 0.6 $ugL^{-1}$ ($5.33{\times}10^{-9}$ M). The methods can be used in direct analysis in vivo or in real-time monitoring of plant tissue.