• Title/Summary/Keyword: Memory equation

Search Result 167, Processing Time 0.027 seconds

Improved Weighted Integral Method and Application to Analysis of Semi-infinite Domain (개선된 가중적분법과 반무한 영역의 해석)

  • 노혁천;최창근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.369-376
    • /
    • 2002
  • The stochastic analysis of semi-infinite domain is presented using the weighted integral method, which is improved to include the higher order terms in expanding the displacement vector. To improve the weighted integral method, the Lagrangian remainder is taken into account in the expansion of the status variable with respect to the mean value of the random variables. In the resulting formulae only the 'proportionality coefficients' are introduced in the resulting equation, therefore no additional computation time and memory requirement is needed. The equations are applied in analyzing the semi-infinite domain. The results obtained by the improved weighted integral method are reasonable and are in good agreement with those of the Monte Carlo simulation. To model the semi-infinite domain, the Bettess's infinite element is adopted, where the theoretical decomposition of the strain-displacement matrix to calculate the deviatoric stiffness of the semi-infinite domains is introduced. The calculated value of mean and the covariance of the displacement are revealed to be larger than those given by the finite domain assumptions which is thought to be rational and should be considered in the design of structures on semi-infinite domains.

  • PDF

3D Transient Analysis of Linear Induction Motor Using the New Equivalent Magnetic Circuit Network Method

  • Jin Hur;Kang, Gyu-Hong;Hong, Jung-Pyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.3
    • /
    • pp.122-127
    • /
    • 2003
  • This paper presents a new time-stepping 3-D analysis method coupled with an external circuit with motion equation for dynamic transient analysis of induction machines. In this method, the magneto-motive force (MMF) generated by induced current is modeled as a passive source in the magnetic equivalent network. So, by using only scalar potential at each node, the method is able to analyze induction machines with faster computation time and less memory requirement than conventional numerical methods. Also, this method is capable of modeling the movement of the mover without the need for re-meshing and analyzing the time harmonics for dynamic characteristics. From comparisons between the results of the analysis and the experiments, it is verified that the proposed method is capable of estimating the torque, harmonic field, etc. as a function of time with superior accuracy.

Prediction of Nonlinear Sequences by Self-Organized CMAC Neural Network (자율조직 CMAC 신경망에 의한 비선형 시계열 예측)

  • 이태호
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.4
    • /
    • pp.62-66
    • /
    • 2002
  • An attempt of using SOCMAC neural network for the prediction of a nonlinear sequence, which is generated by Mackey-Glass equation, is reported. The ,report shows the SOCMAC can handle a system with multi-dimensional continuous inputs, which has been considered very difficult, if not impossible, task to be implemented by a CMAC neural network because of a huge amount of memory required. Also, an improved training method based on the variable receptive fields is proposed. The Performance ranged somewhere around those of TDNN and BP neural networks.

  • PDF

Response Characteristics of Charged Particle Type Display (대전입자형 디스플레이의 응답특성)

  • Lee, Dong-Jin;Kim, Young-Cho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.2
    • /
    • pp.169-173
    • /
    • 2009
  • We studied driving characteristics according to the ratio of mass and charging (m/q) value for charged toner particles with black and yellow color in charged particle type display panel. After biasing rectangle pulse to the transparency electrodes of putted panel with toner particles, its response time and contrast ratio are simultaneously measured using a laser as a optical source, photodiode as a detector and reflective system. As a results, contrast ratio is largest at the shortest response time region which is different to the particle because of m/q. We proposed relational equation for response time, m/q, cell gap and biasing voltage. It has not been studied and reported to analyze the relationship of response time, biasing voltage, lumping phenomena, cell gap, and contrast ratio for toner particle type display.

Vibration Control of CD-ROM Feeding System Using ER Fluids (ER 유체를 이용한 CD-ROM 피딩 시스템의 진동 제어)

  • 김형규;임수철;최승복;박영필
    • The Korean Journal of Rheology
    • /
    • v.11 no.2
    • /
    • pp.97-104
    • /
    • 1999
  • This paper presents vibration control of a drive feeding system consisting of a new type of CD-ROM(compact discread only memory) mount using electro-rheologocal(ER) fluid. Chemically treated starch particles and silicon oil are used for ER fluid. and its field-dependent yield stresses are experimentally distilled under both the shear and the flow modes. On the basis of the yield stress, an appropriate size of ER CD-ROM mount adapted to conventional feeding system is designed and manufactured. Vibration isolation performance of the proposed mount is evaluated in the frequency domain and compared with that of conventional rubber mount. The ER CD-ROM mount is then installed to the drive feeding system and the system equation of motion is derived. Following the formulating the sky-hook controller, computer simulation is undertaken in order to evaluate vibration suppression of the feeding system subjected to various disturbances(excitations).

  • PDF

Effective Motion Compensation Method of H.264 on Multimedia Mobile System (멀티미디어 모바일 시스템에서의 효율적인 H.264 움직임 보간법)

  • Jeong, Dae-Young;Ji, Shin-Haeng;Park, Jung-Wook;Kim, Shin-Dug
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.10
    • /
    • pp.467-473
    • /
    • 2007
  • Power-aware design is one of the most important areas to be emphasized in multimedia mobile systems, in which data transfers dominate the power consumption. In this paper, we propose a new architecture for motion compensation (MC) of H.264/AVC with power reduction by decreasing the data transfers. For this purpose, a reconfigurable microarchitecture based on data type is proposed for interpolation and it is mapped onto the dedicated motion compensation IP (intellectual property) effectively without sacrificing the performance or the system latency. The original quarter-pel interpolation equation that consists of one or two half-pel interpolations and one averaging operation is designed to have different execution control modes, which result in decreasing memory accesses greatly and maintaining the system efficiency. The simulation result shows that the proposed method could reduce up to 87% of power consumption caused by data transfers over the conventional method in MC module.

Shape Recovery Analyses of SMA Actuator-Activated Composite Shells Considering 3-D SMA Material Behaviors (3차원 거동이 고려된 형상기억합금 작동기 부착 복합재 쉘의 변형해석)

  • Kim, Cheol;Lee, Seong Hwan;Jo, Maeng Hyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.44-52
    • /
    • 2003
  • Shape memory alloys (SMA) are often used in smart structures as active components. Their ability to provide large recovery forces and displacements has been useful in many applications, including devices for artificial muscles, active structural acoustic control, and shape control. Based on the 3-dimensional SMA constitutive equation in this paper, the radial displacement control of externally pressurized circular and semicircular composite cylinders under external pressure with a thin SMA layer bonded on its inner surface or inserted between composite layers in investigated using 3-dimensional finite element analysis. Upon actuation through resistive heating, SMAs start to transform from martensitic into austenitic state, simultaneously recover the prestrain, and thus cause the composite cylinders to go back to their original shapes of the cylinder cross-sections.

Performance Analysis of the Parallel CUPID Code for Various Parallel Programming Models in Symmetric Multi-Processing System (Symmetric Multi-Processing 시스템에서 다양한 병렬 기법 모델을 적용한 병렬 CUPID 코드의 성능분석)

  • Jeon, Byoung Jin;Lee, Jae Ryong;Yoon, Han Young;Choi, Hyoung Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.71-79
    • /
    • 2014
  • A parallelization of the bi-conjugate gradient solver for the pressure equation of the CUPID (component unstructured program for interfacial dynamics) code, which was developed for analyzing the components of a pressurized water-cooled reactor, was studied in a symmetric multi-processing system. The parallel performance was investigated for three typical parallel programming models (MPI, OpenMP, Hybrid) by solving incompressible backward-facing step flow at various grid resolutions. It was confirmed that parallel performance was low when problem size was small or the memory requirement for each thread was considerably higher than the cache memory. Furthermore, it was shown that MPI was better than OpenMP regardless of the problem size, and Hybrid was the best when the number of threads was relatively small.

An Investigation of the Performance of the Colored Gauss-Seidel Solver on CPU and GPU (Coloring이 적용된 Gauss-Seidel 해법을 통한 CPU와 GPU의 연산 효율에 관한 연구)

  • Yoon, Jong Seon;Jeon, Byoung Jin;Choi, Hyoung Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.2
    • /
    • pp.117-124
    • /
    • 2017
  • The performance of the colored Gauss-Seidel solver on CPU and GPU was investigated for the two- and three-dimensional heat conduction problems by using different mesh sizes. The heat conduction equation was discretized by the finite difference method and finite element method. The CPU yielded good performance for small problems but deteriorated when the total memory required for computing was larger than the cache memory for large problems. In contrast, the GPU performed better as the mesh size increased because of the latency hiding technique. Further, GPU computation by the colored Gauss-Siedel solver was approximately 7 times that by the single CPU. Furthermore, the colored Gauss-Seidel solver was found to be approximately twice that of the Jacobi solver when parallel computing was conducted on the GPU.

Performance enhancement of base-isolated structures on soft foundation based on smart material-inerter synergism

  • Feng Wang;Liyuan Cao;Chunxiang Li
    • Earthquakes and Structures
    • /
    • v.27 no.1
    • /
    • pp.1-15
    • /
    • 2024
  • In order to enhance the seismic performance of base-isolated structures on soft foundations, the hybrid system of base-isolated system (BIS) and shape memory alloy inerter (SMAI), referred to as BIS+SMAI, is for the first time here proposed. Considering the nonlinear hysteretic relationships of both the isolation layer and SMA, and soil-structure interaction (SSI), the equivalent linearized state space equation is established of the structure-BIS+SMAI system. The displacement variance based on the H2 norm is then formulated for the structure with BIS+SMAI. Employing the particle swarm optimization, the optimization design methodology of BIS+SMAI is presented in the frequency domain. The evolvement rules of BIS+SMAI in the effectiveness, robustness, SMA driving force, inertia force, stroke, and damping enhancement effect are revealed in the frequency domain through changing the inerter-mass ratio, structural height, aspect ratio, and relative stiffness ratio between the soil and structure. Meanwhile, the validation of BIS+SMAI is conducted using real earthquake records. Results demonstrate that BIS+SMAI can effectively reduce the isolation layer displacement. The inerter can significantly increase the hysteretic displacement of SMA and thus enhance its energy dissipation capacity, implying that BIS+SMAI has better effectiveness than BIS+SMA. Although BIS+SMAI and BIS+ tuned inerter damper (TID) have practically the same effectiveness, BIS+SMAI has the lower optimum damping, significantly smaller inertia force, and higher robustness to perturbations of the optimum parameters. Therefore, BIS+SMAI can be used as a more engineering realizable hybrid system for enhancing the performance of base-isolated structures in soft soil areas.