• Title/Summary/Keyword: Membrane vibration

Search Result 122, Processing Time 0.038 seconds

Design and analysis of vibration micro piezoelectric energy harvesting for wireless sensor nodes (무선 센서 노드용 진동형 마이크로 압전 에너지 하베스팅 설계 및 분석)

  • Yoon, Kyu-Hyung;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.277-277
    • /
    • 2009
  • In this paper, PMPG (Piezoelectric Micro Power Generator) was investigated by ANSYS FEA (Finite Element Analysis) to decrease operating frequency and improve out power. The micro power generator was designed to convert ambient vibration energy to electrical power as a ZnO piezoelectric material. To find optimal model in low vibration ambient, the shape of power generator was changed with different membrane width, thickness, length, and proof mass size. Used the ANSYS modal analysis, bending mode and stress distribution of optimal model were analyzed. Also, the displacement with the frequency range was analyzed by harmonic analysis. From the simulation results, the resonance frequency of optimal model is about 373 Hz and confirmed the possibility of ZnO micro power generator for wireless sensor node applications.

  • PDF

Vibration Characteristics of a New Optical Disk with Initial Stress (초기응력을 갖는 차세대 광디스크의 진동 특성)

  • Kim, Jae-Gwan;Lee, Seung-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2513-2519
    • /
    • 2000
  • Free vibration characteristics of an initially stressed CD/DVD disk, which is designed for increasing critical speeds of current optical disks, are analyzed using the Rayleigh-Ritz technique based on variational formulations. Natural frequencies of the new disk depend on membrane stresses caused by disk rotation as well as residual stresses imposed during the cooling process of the injection molding. Critical speeds are calculated for the various initial patterns of radial and circumferential stresses. Initially imposed tensile stresses increase the natural frequencies of all the vibration modes except zero nodal diameter mode, whose natural frequency is independent of circumferential stress. A new disk with initial tensile stress of 0.5MPa is shown to have its critical speed about 30 % higher than the current optical disk.

Design and analysis of ZnO piezoelectric micro power generators with low frequency (저주파수용 ZnO 압전 마이크로 전원의 설계와 분석)

  • Chung, Gwiy-Sang;Yoon, Kyu-Hyung
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.372-376
    • /
    • 2009
  • This paper describes the characteristics of piezoelectric micro power generators by the ANSYS FEA(finite element analysis). The micro power generator was designed to convert ambient vibration energy to electrical power as a ZnO piezoelectric material. To find optimal model in low vibration ambient, the shape of power generator was changed with different membrane width, thickness, length, and proof mass size. Using the ANSYS modal analysis, bending mode and stress distribution of optimal model were analyzed. Moreover, the displacement with the frequency range was analyzed by harmonic analysis. From the simulation results, the resonance frequency of optimal model is about 373 Hz and investigate the possibility of ZnO micro power generator for ambient vibration applications.

Vibration Control of Membrane with Tension Gradient Using Multiple Dynamic Absorber (다중 동흡진기를 이용한 장력구배를 갖는 박판의 진동 제어)

  • Park, Chong-Hyun;Kim, Sung-Dae;Kim, Won-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.5 s.98
    • /
    • pp.595-603
    • /
    • 2005
  • In this work, the multiple dynamic absorber( MDA ) is introduced to reduce several vibration modes of shadow mask simultaneously and its design method is developed from the theory of the simple dynamic absorber. When designing the dynamic absorber, there are three significant design parameters such as mass, damping ratio and tuning frequency. Therefore the sensitivity analysis for those parameters has been executed in order to find out the design criteria of multiple dynamic absorber using the finite element model of shadow mask. The multiple dynamic absorber(MDA) designed by the proposed method is tested theoretically and experimentally to estimate the efficiency of vibration reduction. From the results, it is verified that the method is feasible to apply the system having the multiple nitration modes and more efficient than the thin wire-type damper used commercially to reduce the vibration of shadow mask.

Performance Test Method on the Influence Waterproofing as Behavior of Concrete Structure (지하 콘크리트 구조물의 거동에 대한 방수층의 대응성 평가에 관한 실험적 연구)

  • Noh Jong-Soo;Kwon Shi-Won;Kwak Kyu-Sung;Kwon Kee-Joo;Oh Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • v.y2004m10
    • /
    • pp.77-81
    • /
    • 2004
  • The massive structures are not free to move with vibration, differential settlement, thermal stresses because, construction and expansion joint, crack etc., can be large enough to cause leakage as deformation of waterproofing. It has been depended on the test method of tensile/tear strength which is waterproofing performance as behavior of concrete structure crack. However, not to practically confirm the creep applied to concrete surface, even waterproofing membrane have more performance than definite strength and elasticity. Therefore, in this study will focus on the test method to consider a resistance performance about loose adhesion and deformation of waterproofing and behavior of concrete structure as construction/expansion joint, crack. Performance test method on the influence as behavior of concrete structure crack is to choose waterproofing materials and construction method which possible to confront with behavior of 50mm crack in the atmosphere and low temperature. Examine the deformation of waterproofing membrane and loose adhesion which can occur to structure in general job site, suggest standard testing method to analyze correlation waterproofing membrane and structure with 5-types of materials used in this study, such as Adhesion membrane and sheet complex, sheet and urethane complex, self-adhesive sheet, spray poly-urea, spray membrane of rubberized Asphalt.

  • PDF

Gas Transfer and Hemolysis Characteristics of a New Type Intravenous Lung Assist Device (혈관 내 신형 폐보조장치의 기체전달 및 용혈 특성)

  • 김기범;권대규;정경락;이삼철
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.121-126
    • /
    • 2003
  • The purpose of this work was to assess and quantify whether the beneficial effects in long-term gas exchange at exciting frequency were obtained at different frequencies as well and then to develop a vibrating intravascular lung assist device(VIVLAD), for Patients suffering from acute respiratory distress syndrome(ARDS) or chronic respiratory problems. We investigate the optimal condition of the frequency band excited with new vibrator at state of limit hemolysis when blood hemolysis came to through a membrane vibration action. The experimental design and procedures were given for a device used to assess the effectiveness of membrane vibrations. Quantitative experimental measurements were performed to evaluate the performance of the device . and to identify membrane vibration dependence on blood hemolysis. We developed an analytical solution for the hydrodynamics of flow through a bundle of sinusoidally vibrated hollow fibers that is used to provide some insight into how wall vibrations might enhance the performance of the VIVLAD. In the result, it was measured that the effect of various excited frequencies in gas transfer rate and hemolysis from the maximum gas transfer rate at no vibration when the maximum gas transfer rates showed at module type 6, module type 6 consisted of 675 hollow fiber membranes The maximum oxygen transfer rate was caused by the occurrence of maximum amplitude and transfer of vibration to hollow fiber membranes when it was excited by the frequency band of 7Hz at each blood flow rate. because this frequency became the End mode resonance frequency of the flexible in blood flow. Also, when module type 6 was excited at an excited frequency of 7Hz. blood hemolysis was low. Therefore, we decided that the limit of hemolysis frequency is 7Hz . because maximum amplitude occurred at this frequency.

Development of a GTT NO96 Membrane Type 170K $m^3$ LNG Carrier with Ice Class IA (GTT.NO 96 멤브레인형 170K ICE-1A급 천연액화가스 운반선 개발)

  • Oh, Yeong-Tae;Han, Sung-Kon;Yoo, In-Sang;Urm, Hang-Sub
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2009.09a
    • /
    • pp.6-17
    • /
    • 2009
  • The present paper addresses development of a GTT NO96 membrane type 170K m3 LNG carrier targeted to operate in moderate ice infested seas including Baltic Sea, Sakhalin port of Sea of Okhotsk, Murmansk port of Barents Sea, etc. Critical design issues are covered in detail to meet the requirements coming from the missioned operation conditions comprising low design ambient temperature, harsh wave conditions, stringent environmental protection policies, etc.

  • PDF

A Parameter Study on the Frequency Characteristics Control of Implantable Bone Conduction Transducer Using FEA (FEA를 이용한 이식형 골전도 진동체의 주파수 특성 제어에 관한 파라미터 연구)

  • Shin, Dong Ho;Kim, Myoung Nam
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.1040-1048
    • /
    • 2020
  • In this study, in order to improve the implantable bone conduction transducer of the prototype proposed by Shin et al., the effect of the element parameters of the transducer on the frequency characteristics was analyzed using electromagnetic and mechanical vibration analysis. Electromagnetic analysis was performed on the size of the permanent magnet and the distance between the metal plate and the coil to derive an optimal structure that generates the maximum Lorentz force. In addition, mechanical vibration analysis was performed on the cantilever structure of the vibrational membrane in order to minimize the distortion of the transducer and to have a frequency characteristic suitable for conductive hearing loss compensation. The frequency characteristics of the transducer of the optimal structure derived through finite element method were compared with the simulation results of the previous transducer. As a result, the output magnitude (displacement) of the transducer designed with the optimal structure generated an average 8.8 times higher than the previous transducer, and the resonance frequency was generated at 0.9 kHz.

Characterization of Frequency Separation in Polymer Membranes Mimicking a Human Auditory System (생체 청각기구를 모사한 폴리머 박막의 주파수 분리 특성 평가)

  • Song, Won-Joon;Bae, Sung-Jae;Kim, Wan-Doo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.516-521
    • /
    • 2011
  • The basilar membrane, an important functional part of the cochlea, is responsible for spectral separation of vibration signals transmitted from the stapes. In current study, scaled-up polymer membranes designed by mimicking the human basilar membrane were used for investigation of the frequency-separation characteristic. Displacement field formed on each polymer membrane was acquired by Laser Doppler scanning vibrometer and post-processed frequency-wise. The locations of the maximum displacement along the centerline were identified and collected for individual frequency range to produce the frequency-position map of individual polymer membrane. The influences of the membrane thickness and material properties on the variation of the frequency separability were discussed.