• 제목/요약/키워드: Membrane vibration

검색결과 122건 처리시간 0.041초

Industrial dairy wastewater purification by shear-enhanced membrane filtration: The effects of vibration

  • Kertesz, Szabolcs
    • Membrane and Water Treatment
    • /
    • 제5권2호
    • /
    • pp.73-86
    • /
    • 2014
  • Membrane fouling is a major challenge limiting the use of membrane applications. In this study high induced shear rates were utilized at the membrane surface in order to reduce the organic and inorganic scaling by using the torsional vibration of flat sheet membranes. The performances of a vibratory shear-enhanced processing (VSEP) system for the ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) membrane filtration of industrial dairy wastewater were investigated. The vibration and non-vibration methods were compared with the same membrane and operational parameters during the purification of real dairy industrial process wastewater. In the initial experiments, short-term tests were carried out in which the effects of vibration amplitude, recirculation flow rate and transmembrane pressure were measured and compared. The permeate flux, turbidity, conductivity and chemical oxygen demand (COD) reduction of dairy wastewater were investigated by using UF, NF and RO membranes with vibration and non-vibration methods. In the subsequent experiments, concentration tests were also carried out. Finally, scanning electron microscopy (SEM) revealed that the vibration method gave a better performance, which can be attributed to the higher membrane shear rate, which reduces the concentration of solids at the membrane, and the transmission.

Wind-induced random vibration of saddle membrane structures: Theoretical and experimental study

  • Rongjie Pan;Changjiang Liu;Dong Li;Yuanjun Sun;Weibin Huang;Ziye Chen
    • Wind and Structures
    • /
    • 제36권2호
    • /
    • pp.133-147
    • /
    • 2023
  • The random vibration of saddle membrane structures under wind load is studied theoretically and experimentally. First, the nonlinear random vibration differential equations of saddle membrane structures under wind loads are established based on von Karman's large deflection theory, thin shell theory and potential flow theory. The probabilistic density function (PDF) and its corresponding statistical parameters of the displacement response of membrane structure are obtained by using the diffusion process theory and the Fokker Planck Kolmogorov equation method (FPK) to solve the equation. Furthermore, a wind tunnel test is carried out to obtain the displacement time history data of the test model under wind load, and the statistical characteristics of the displacement time history of the prototype model are obtained by similarity theory and probability statistics method. Finally, the rationality of the theoretical model is verified by comparing the experimental model with the theoretical model. The results show that the theoretical model agrees with the experimental model, and the random vibration response can be effectively reduced by increasing the initial pretension force and the rise-span ratio within a certain range. The research methods can provide a theoretical reference for the random vibration of the membrane structure, and also be the foundation of structural reliability of membrane structure based on wind-induced response.

Free Vibration Analysis of Solid and Annular Circular Membranes with Continuously Varying Density Using The Differential Transformation Method

  • Shin, Young-Jae;Yun, Jong-Hak;Jaun, Su-Ju;You, Young-chan
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.988-993
    • /
    • 2003
  • This paper presents the application of the technique of differential transformation of free vibration of membrane. Numerical calculations are carried out and compared with previously published results. The results obtained by the present method agree very well with those reported in the previous works. The present analysis shows the usefulness and validity of differential transformation in solving a solid and annular circular membranes problem of the responses of the free vibration.

  • PDF

면내/면외변형을 고려한 이송되는 박막의 진동해석 (Vibration Analysis of an Axially Moving Membrane with In-Plane/out-of-Plane Deformations)

  • 신창호;정진태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.164-168
    • /
    • 2004
  • The vibration analysis of an axially moving membrane are investigated when the membrane has the two sets of in-plane boundary conditions, which are free and fixed constraints in the lateral direction. Since the in-plane stiffness is much higher than the out-of-plane stiffness, it is assumed during deriving the equations of motion that the in-plane motion is in a steady state. Under this assumption. the equation of out-of\ulcornerplane motion is derived, which is a linear partial differential equation influenced by the in-plane stress distributions. After discretizing the equation by using the Galerkin method, the natural frequencies and mode shapes are computed. In particular, we put a focus on analyzing the effects of the in-plane boundary conditions on the natural frequencies and mode shapes of the moving membrane.

  • PDF

면내/면외변형을 고려한 이송되는 박막의 진동해석 (Vibration Analysis of an Axially Moving Membrane with In-plane/Out-of-plane Deformations)

  • 신창호;정진태
    • 한국소음진동공학회논문집
    • /
    • 제14권9호
    • /
    • pp.910-918
    • /
    • 2004
  • The vibration analysis of an axially moving membrane are investigated when the membrane has the two sets of in-plane boundary conditions, which are free and fixed constraints in the lateral direction. Since the in-plane stiffness is much higher than the out-of-plane stiffness, it is assumed during deriving the equations of motion that the in-plane motion is in a steady state. Under this assumption, the equation of out-of-plane motion is derived, which is a linear partial differential equation influenced by the in-plane stress distributions. After discretizing the equation by using the Galerkin method, the natural frequencies and mode shapes are computed. In particular, we put a focus on analyzing the effects of the in-plane boundary conditions on the natural frequencies and mode shapes of the moving membrane.

축방향으로 움직이는 박막의 모델링 및 종진동해석 (Modeling and Longitudinal Vibration Analysis for an Axially Moving Membrane)

  • 신창호;정진태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.613-617
    • /
    • 2001
  • The longitudinal vibration of an axially moving membrane is studied when the membrane has translating acceleration. The equation for the longitudinal vibration is linear and coupled, The equation for the longitudinal vibration are discretized by using the Galerkin approximation after they are transformed into the variational equations, i.e., the weak forms so that the admissible function can be used for the bases of the longitudinal deflection. With the discretized equations for the longitudinal vibration, the time responses are investigated by using newmark method.

  • PDF

축방향으로 움직이는 박막의 면내 진동해석 (In-plane Vibration Analysis for an Axially Moving Membrane)

  • 정진태;신창호;김원석
    • 한국소음진동공학회논문집
    • /
    • 제12권3호
    • /
    • pp.221-227
    • /
    • 2002
  • The longitudinal and lateral in-plane vibrations of an axially moving membrane are investigated when the membrane has translating acceleration. By extended Hamilton's principle, the governing equations are derived. The equations of motion for the in-plane vibrations are linear and coupled. These equations are discretized by using the Galerkin approximation method after they are transformed into the variational equations, j.e., the weak forms so that the admissible functions can be used for the bases of the in-plane deflections. With the discretized equations for the in-plane vibrations, the natural frequencies and the time histories of the deflections are obtained.

영역 분할법을 이용한 깊은 홈을 가진 임의 형상 오목 멤브레인의 고유치 해석 (Eigenvalue Analysis of Arbitrarily Shaped, Concave Membranes With a Deep Groove Using a Sub-domain Method)

  • 강상욱;윤주일
    • 한국소음진동공학회논문집
    • /
    • 제19권10호
    • /
    • pp.1069-1074
    • /
    • 2009
  • A sub-domain method for free vibration analysis of arbitrarily shaped, concave membranes with a deep groove is proposed in the paper. The proposed method divides the concave membrane of interest into two convex regions. The vibration displacement(approximate solution) of each convex region is assumed by linearly superposing plane waves generated at edges of the region. A sub-system matrix for each convex region is extracted by applying a provisional boundary condition to the approximate solution. Finally, a system matrix, which of the determinant gives eigenvalues of the concave membrane, is made by considering the fixed boundary condition(displacement zero condition) at edges and the compatibility condition(the condition of continuity in displacement and slope) at the interface between the two regions. Case studies show that the proposed method is valid and accurate when the eigenvalues by the proposed are compared to those by NDIF method, FEM, or the exact method.

통기성을 갖는 막재료의 흡음특성 (Sound Absorption Characteristics of Permeable Membrane)

  • 정정호;김정중;김규제
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.270-275
    • /
    • 2009
  • Sound absorption characteristics of membrane system which are used in stadiums and arenas were investigated. Theoretical studies on acoustic properties of single and double leaf permeable membrane conducted. Also, experimental studies on sound absorption characteristics of combined membrane system that is composed of outer and inner membrane material were conducted. In this study, sound absorption characteristics of each membrane were investigated by experiments in reverberation chamber. 4 types of permeable membranes and a non-permeable membrane were used for experiments. Air space behind membrane material and tension on the membrane was varied. Sound absorption performance of permeable membrane materials was confirmed. As increasing air space behind the membrane material, sound absorption coefficient was increased. In a resonance absorption frequency band sound absorption coefficient varied more dramatically. Sound absorption characteristics were flat in mid and high frequency range and sound absorption coefficient was from 0,3 to 0,5. Also sound absorption coefficient was increased by the increment of surface density and air permeability of membrane. However, over the certain value of air permeability, sound absorption coefficient was decreased. These results can be used as design factors and method for the room acoustic design of dome-stadiums and large free-form buildings.

  • PDF

박막형 소음기: 이론과 적용 가능성 (Membrane-duct: its theory and feasibility)

  • 김양한;전영두
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1648-1653
    • /
    • 2000
  • Theoretical analysis of noise reduction by a membrane-duct system is presented. When acoustic waves propagate in the membrane-duct, the part of membrane is also excited and its motion is coupled with interior medium. For an infinite plane membrane-duct system, a simple coupled governing equation is derived and solved. One of the characteristics of dispersion relation is that evanescent waves occur below critical frequency. Attaching damping materials to the membrane may improve the absorption efficiency of acoustic energy. The results show that the membrane-duct system can be applied to diminish and absorb low frequency noise in duct instead of passive muffler, such as simple expansion chamber or absorption material.

  • PDF