• Title/Summary/Keyword: Membrane vesicle

Search Result 158, Processing Time 0.024 seconds

Stem cell-derived extracellular vesicle therapy for acute brain insults and neurodegenerative diseases

  • Bang, Oh Young;Kim, Ji-Eun
    • BMB Reports
    • /
    • v.55 no.1
    • /
    • pp.20-29
    • /
    • 2022
  • Stem cell-based therapy is a promising approach for treating a variety of disorders, including acute brain insults and neurodegenerative diseases. Stem cells such as mesenchymal stem cells (MSCs) secrete extracellular vesicles (EVs), circular membrane fragments (30 nm-1 ㎛) that are shed from the cell surface, carrying several therapeutic molecules such as proteins and microRNAs. Because EV-based therapy is superior to cell therapy in terms of scalable production, biodistribution, and safety profiles, it can be used to treat brain diseases as an alternative to stem cell therapy. This review presents evidences evaluating the role of stem cell-derived EVs in stroke, traumatic brain injury, and degenerative brain diseases, such as Alzheimer's disease and Parkinson' disease. In addition, stem cell-derived EVs have better profiles in biocompatibility, immunogenicity, and safety than those of small chemical and macromolecules. The advantages and disadvantages of EVs compared with other strategies are discussed. Even though EVs obtained from native stem cells have potential in the treatment of brain diseases, the successful clinical application is limited by the short half-life, limited targeting, rapid clearance after application, and insufficient payload. We discuss the strategies to enhance the efficacy of EV therapeutics. Finally, EV therapies have yet to be approved by the regulatory authorities. Major issues are discussed together with relevant advances in the clinical application of EV therapeutics.

The Role of Extracellular Vesicles in Senescence

  • Oh, Chaehwan;Koh, Dahyeon;Jeon, Hyeong Bin;Kim, Kyoung Mi
    • Molecules and Cells
    • /
    • v.45 no.9
    • /
    • pp.603-609
    • /
    • 2022
  • Cells can communicate in a variety of ways, such as by contacting each other or by secreting certain factors. Recently, extracellular vesicles (EVs) have been proposed to be mediators of cell communication. EVs are small vesicles with a lipid bilayer membrane that are secreted by cells and contain DNA, RNAs, lipids, and proteins. These EVs are secreted from various cell types and can migrate and be internalized by recipient cells that are the same or different than those that secrete them. EVs harboring various components are involved in regulating gene expression in recipient cells. These EVs may also play important roles in the senescence of cells and the accumulation of senescent cells in the body. Studies on the function of EVs in senescent cells and the mechanisms through which nonsenescent and senescent cells communicate through EVs are being actively conducted. Here, we summarize studies suggesting that EVs secreted from senescent cells can promote the senescence of other cells and that EVs secreted from nonsenescent cells can rejuvenate senescent cells. In addition, we discuss the functional components (proteins, RNAs, and other molecules) enclosed in EVs that enter recipient cells.

Multi-Immunogenic Outer Membrane Vesicles Derived from a MsbB-Deficient Salmonella enterica Serovar Typhimurium Mutant

  • Lee, Sang-Rae;Kim, Sang-Hyun;Jeong, Kang-Jin;Kim, Keun-Su;Kim, Young-Hyun;Kim, Sung-Jin;Kim, E-Kyune;Kim, Jung-Woo;Chang, Kyu-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1271-1279
    • /
    • 2009
  • To develop low endotoxic and multi-immunogenic outer membrane vesicles (OMVs), a deletion mutant of the msbB gene in Salmonella enterica serovar Typhimurium (S. Typhimurium) was used as a source of low endotoxic OMV, and an expression vector of the canine parvovirus (CPV) VP2 epitope fused to the bacterial OmpA protein was constructed and transformed into the Salmonella ${\Delta}msbB$ mutant. In a lethality test, BALB/c mice injected intraperitoneally with the Salmonella ${\Delta}msbB$ mutant survived for 7 days, whereas mice injected intraperitoneally with the wild type survived for 3 days. Moreover, all mice inoculated orally with the ${\Delta}msbB$ mutant survived for 30 days, but 80% of mice inoculated orally with the wild type survived. The OmpA::CPV VP2 epitope fusion protein was expressed successfully and associated with the outer membrane and OMV fractions from the mutant S. Typhimurium transformed with the fusion protein-expressing vector. In immunogenicity tests, sera obtained from the mice immunized with either the Salmonella msbB mutant or its OMVs containing the OmpA::CPV VP2 epitope showed bactericidal activities against wild-type S. Typhimurium and contained specific antibodies to the CPV VP2 epitope. In the hemagglutination inhibition (HI) assay as a measurement of CPV-neutralizing activity in the immune sera, there was an 8-fold increase of HI titer in the OMV-immunized group compared with the control. These results suggested that the CPV-neutralizing antibody response was raised by immunization with OMV containing the OmpA::CPV VP2 epitope, as well as the protective immune response against S. Typhimurium in BALB/c mice.

Effects of Barbiturates on Transbilayer Fluidity Domains of Phospholipid Model Membrane Monolayers (Barbiturates가 소의 대뇌피질 Synaptosomal Plasma Membrane Vesicles로 부터 추출 제제한 총지질 및 총인지질 인공세포막에 형성된 비대칭적 유동성에 미치는 비대칭적 영향)

  • Yun, Il;Kang, Jung-Sook
    • The Korean Journal of Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.103-114
    • /
    • 1992
  • Selective quenching of 1,6-diphenyl-1,3,5-hexatriene (DPH) by trinitrophenyl groups was utilized to examine the transbilayer fluidity domains of the model membranes of total lipids (SPMVTL) and phospholipids (SPMVPL) extracted from synaptosomal plasma membrane vesicles. At $37^{\circ}C$, all anisotropy (r), limiting anisotropy $(r_{\infty})$, and order parameter (S) values of DPH in the SPMVTL were larger than those in SPMVPL. The anisotropy, limiting anisotropy, and order parameter of DPH in the inner monolayer were 0.025, 0.033, and 0.070, respectively, greater than calculated for the outer monolayer of SPMVTL. In SPMVPL, the anisotropy, limiting anisotropy, and order parameter of DPH in the inner monolayer were 0.014, 0.018, and 0.047, respectively, greater than calculated for the outer monolayer. Selective quenching of DPH by trinitrophenyl groups was also utilized to examine the effects of barbiturates on the transbilayer fluidity domains of SPMVTL and SPMVPL. Barbiturates did not affect the anisotropy of DPH in the transbilayer domains of SPMVTL. In contrast, barbiturates increased the fluorescence anisotropy, limiting anisotropy, and order parameter of DPH in the SPMVPL in a dose-dependent manner. Barbiturates showed a greater ordering effect on the outer monolayer as compared to the inner monolayer of SPMVPL. Hence, it has been demonstrated for the first time that the Sheetz-Singer hypothesis (1974) may be valid for phospholipid model membranes.

  • PDF

Transbilayer Effects of n-Alkanols on the Fluidity of Model Membranes of Total Lipids Extracted from Synaptosomal Plasma Membrane Vesicles (n-Alkanols가 소의 대뇌피질 Synaptosomal Plasma Membrane Vesicles로부터 추출 제제한 총지질 인공세포막 이중층간에 형성된 비대칭적 유동성에 미치는 비대칭적 영향)

  • Yun, Il;Kang, Jung-Sook
    • The Korean Journal of Pharmacology
    • /
    • v.28 no.2
    • /
    • pp.191-199
    • /
    • 1992
  • Selective quenching of 1,6-diphenyl-1,3,5-hexatriene (DPH) by trinitrophenyl groups was utilized to examine the transbilayer fluidity asymmetry of model membranes of total lipids (SPMVTL) extracted from synaptosomal plasma membrane vesicles (SPMV). The polarization (P), anisotropy (r), limiting anisotropy $(r_{\infty})$, and order parameter (S) of DPH in the inner monolayer were 0.031, 0.025, 0.033, and 0.070, respectively, greater than calculated for the outer monolayer of SPMVTL. Selective quenching of DPH by trinitrophenyl groups was also utilized to examine the effects of n-alkanols on the individual monolayer structure of SPMVTL. n-Alkanols fluidized the hydrocarbon region of bulk SPMVTL, and the potencies of n-alkanols up to 1-nonanol increased with carbon chain length. It appears that the potencies in bilayer fluidization increase by 1 order of magnitude as the carbon chain length increases by two carbon atoms. The cut-off phenomenon was reached at 1-decanol, where further increase in hydrocarbon length resulted in a decrease in pharmacological activity. The n-alkanols had greater fluidizing effects on the outer monolayer as compared to the inner monolayer of SPMVTL, even though these selective effects tended to become weaker as carbon chain length increased. Thus, it has been proven that n-alkanols exhibit selective rather than nonselective fluidizing effects within transbilayer domains of SPMVTL.

  • PDF

Cell fusion and fusants characterization of Bacillus strains producing biopolymer (Biopolymer 생산성 Bacillus 속 균주의 세포융합과 융합주의 세포특성)

  • Yim, Moo-Hyun;Kim, Seong-Ho
    • Applied Biological Chemistry
    • /
    • v.42 no.1
    • /
    • pp.12-19
    • /
    • 1999
  • To improve biopolymer productivity and properties of Bacillus strains, protoplast fusion was performed between biopolymer producing Bacillus subtilis K-1 and lactose utilizing Bacillus coagulans. The results were as follows; Protoplasts mixed in fusion fluid containing 33% PEG 6000, 1% PVP and 10 mM $CaCl_2$ were reacted for 5 min at $37^{\circ}C$ and then centrifused protoplasts were directly overlaid on the selective media containing $100\;{\mu}g/ml$ antibiotics and incubated for 3 days. At this conditions, the frequency of protoplast fusion was generally in the range of $4.6{\times}10^{-5}\;to\;1.8{\times}10^{-7}$ in ratio. Segregation ratio was observed between 1 to 6% indicating genetic stability of all the fusants. Fusants growth were also observed on the media contained amino acid and antibiotics as required marked materials. DNA contents of the selected fusants were 1.6 to 2.7 times more than that of parent strains. With observation by TEM microscopy, spherical protoplasts were first released from the swollen parental cells and then contracted to fuse in the process of fusion. And fused cells were observed representative vesicle. Originally, the parental cells were observed as in the morphology of thick-walled and double membrane-surrounded rod shape with TEM microscopy.

  • PDF

Nano Capsulization of Ceramide and the Efficacy of Atopy Skin (나노세라마이드의 캡슐화와 아토피 피부의 치료)

  • Zhoh Choon-Koo;Kim In-Young;Lee Hee-Seob
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.3 s.47
    • /
    • pp.419-426
    • /
    • 2004
  • The nano-ceramide capsulation is a technique that capsulates ceramide III and tocopheryl linoleate at the mono-vesicle to act on the horny layer in skin. In this technique, $0.5{\~}5.0\;wt\%$ of hydrogenated lecithin and $0.01{\~}2.00\;wt\%$ of lysolecithin are used as the membrane-strengthen agents of the mono-vesicle and $5.0{\~}10.0\;wt\%$ of propylene glycol and $5.0{\~}10.0\;wt\%$ of ethyl alcohol are used as solvents. Active ingredients such ceramide III and tocopheryl linoleate are utilized to enhance the moisturizing efficacy and treat atopy skin. These materials do not contain synthetic emulsifiers. The optimal conditions or nano-ceramide capsulation are such that particles pass Microfludizdizer 3 times at 1,000 bar and $60{\~}70^{\circ}C$ and pH of nano capsules is $5.8{\pm}0.5.$ The average size of particles is $63.1{\pm}7.34\;nm$ showing lucid state like water by the laser light scattering. A zeta potential value is $-55.1\pm0.84\;mV.$ Through clinical tests, the moisturizing effect (in-vivo, n=8, p-value<0.05) showed $21.15\%$ of improvement comparison to comparison-samples and $36.31\%$ of improvement compared to the state before treatment. Moreover, the effectiveness of atopy skin showed positive reaction from 10 volunteers.

Regulation of SPIN90 by Cell Adhesion and ERK Activation

  • Kim Sung Hyun;Kim Dae Joong;Song Woo Keun
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.141-146
    • /
    • 2004
  • SPIN90 was identified to farm molecular complex with $\betaPIX$, WASP and Nck. This complex shows that SPIN90 interacts with Nck in a manner dependent upon cell adhesion to extracellular matrix, but $SPIN90{\cdot}{\beta}PIX{\cdot}WASP$ complex was stable even in suspended cells. This suggests that SPIN90 serves as an adaptor molecule to recruit other proteins to Nck at focal adhesions. SPIN90 was phosphorylated by ERK1, which was, itself, activated by cell adhesion and platelet-derived growth factor. Such phosphorylation of SPIN90 likely promotes the interaction of the $SPIN90{\cdot}{\beta}PIX{\cdot}WASP$ complex and Nck. It thus appears that the interaction of the $SPIN90{\cdot}{\beta}PIX{\cdot}WASP$ complex with Nck is crucial for stable cell adhesion and can be dynamically modulated by SPIN90 phosphorylation that is dependent on cell adhesion and ERX activation. SPIN90 directly binds syndapin I, syndapin isoform II-1 and II-s via its PRD region in vitro, in vivo and also associates with endocytosis core components such as clathrin and dynamin. In neuron and fibroblast, SPIN90 colocalizes with syndapins as puntate form, consistent with a role for SPIN90 in clathrin-mediated endocytosis pathway. Overexpression of SPIN90 N-term inhibits receptor-mediated endocytosis. Interestingly, SPIN90 PRD, binding interface of syndapin, significantly blocks internalization of transferrin, demonstrating SPIN90 involvement in endocytosis in vivo by interacting syndapin. Depletion of endogenous SPIN90 by introducing $\alpha-SPIN90$ also blocks receptor-mediated endocytosis. Actin polymerization could generate farce facilitating the pinch-out event in endocytosis, detach newly formed endocytic vesicle from the plasma membrane or push out them via the cytosol on actin tails. Here we found that SPIN90 localizes to high actin turn over cortical area, actin-membrane interface and membrane ruffle in PDGF treated cells. Overexpression of SPIN90 has an effect on cortical actin rearrangement as filopodia induction and it is mediated by the Arp2/3 complex at cell periphery. Consistent with a role in actin organization, CFP-SPIN90 present in actin comet tail generated by PIP5 $kinase\gamma$ overexpression. Therefore this study suggests that SPIN90 is functional linker between endocytosis and actin cytoskeleton.

  • PDF

Purification of Band 3 from the Human Erythrocyte Membrane and its Incorporation into Liposome (사람 적혈구막 Band 3의 정제 및 Liposome으로의 도입)

  • Kim, Jae-Ryong;Kim, Jung-Hye;Lee, Ki-Yung
    • Journal of Yeungnam Medical Science
    • /
    • v.3 no.1
    • /
    • pp.41-48
    • /
    • 1986
  • Band 3, the predominent 95,000 dalton anion transport protein, is the major intrinsic glycoprotein of the human erythrocyte membrane. This anion carrier exists as a dimer and binds the cytoskeletons such as spectrin, ankyrin and actin. And the liposomes are vesicular structures which form spontaneouly upon hydration of phospholipids. These artificial lipid vesicles have been investigated as model of the biological membranes and as a mean of improving the delivery of nucleic acids, drugs, proteins and biological substances to specific target tissues and cells. In this study, we were purified Band 3 from the human erythrocyte membrane(ghost) was prepared by hemolysis of intact human erythrocyte with weak alkali-hypotonic solution. Band 6 was removed from ghost by extracting with solution of an ionic strength of 0.15. Band 3 and Band 4 were solubilized selectively by extracting Band 6-depleted ghosts with Triton X-100 under nondenaturing conditions. Band 3 was then purified from Triton X-100 extract treated with p-chloromercuribenzoate by sucrose density gradient ultracentrifugation. This purified Band 3 was incorporated into liposomes prepared by reverse-phase evaporation. Phosphatidyl L-serine and cholesterol(1 : 1 molar ratio) were dissolved in chloroform and then chloroform was removed by rotatory evaporation under reduced pressure. Band 3 solution without Triton X-100 was introduced into a mixture of lipids and diethylether. Diethylether was subsequently removed by evaporation. This purified Band 3 and its incorporation into liposomes were confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

  • PDF

The Effects of Fluoride Administered Systemically during Rat Development on Forming Bone (발생중인 흰쥐에 전신적으로 투여된 불소가 골형성에 미치는 영향)

  • Lim, Do-Seon;Ahn, Yong-Soon;Kim, Eun-Sook;Bae, Hyung-Joon;Chang, Byung-Soo
    • Applied Microscopy
    • /
    • v.32 no.3
    • /
    • pp.265-273
    • /
    • 2002
  • The purpose of this study was to observe the influences of the water fluoride concentration on the growth changes, the histologic characteristics of osteoblast in the tibia of growing newborn rats by using electron microscopy and on the composition changes of bone matrix in those by using energy dispersive x-ray system (EDX). The water fluoride concentration was respectively 0 ppm (contrast group), 100 ppm (100 ppm group), 200 ppm (200 ppm group) and 300 ppm (300 ppm group). The results of the investigation by using electron microscopy were as followed. In contrast group, the traditional cuboidal osteoblasts were observed. In 100 ppm group, several reversal line, the newly formed osteoid by the strongly activated osteoblast and the well developed rough endoplasmic reticulum, mitochondria in cytoplasm of osteoblast were observed. Also, many secretory vesicle around cell membrane were observed and some fused with cell membrane released secretory granule out of cell. In 200 ppm group, the depressed osteoblasts were observed, mitochondria in cytoplasm were expanded and cristae shape in mitochondria were destroyed. Also, the ribosome at the surface of rough endoplasmic reticulum were not observed. In 300 ppm group, the adjacent osteoblasts with endosteum were irregularly arranged, the cell membrane were destroyed and organelles were flowed out of cell. On the other hand, the results of the investigation by using energy dispersive x-ray system were as followed. P and Ca concentrations in 100 ppm group were increased more than those in contrast group. But, in 200 and 300 ppm group were not increased more than those in 100 ppm group. Therefore, the activities of the osteoblasts were increased, the bone matrix were actively synthesized by the supplied water fluoride. But, the osteoblasts were destroyed, inhibited by the higher water fluoride concentration.