DOI QR코드

DOI QR Code

Multi-Immunogenic Outer Membrane Vesicles Derived from a MsbB-Deficient Salmonella enterica Serovar Typhimurium Mutant

  • Lee, Sang-Rae (The National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Sang-Hyun (The National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Jeong, Kang-Jin (The National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Keun-Su (The National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Young-Hyun (The National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Sung-Jin (The National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, E-Kyune (The National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Jung-Woo (Department of Animal Resources and Science, Dankook University) ;
  • Chang, Kyu-Tae (The National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Published : 2009.10.31

Abstract

To develop low endotoxic and multi-immunogenic outer membrane vesicles (OMVs), a deletion mutant of the msbB gene in Salmonella enterica serovar Typhimurium (S. Typhimurium) was used as a source of low endotoxic OMV, and an expression vector of the canine parvovirus (CPV) VP2 epitope fused to the bacterial OmpA protein was constructed and transformed into the Salmonella ${\Delta}msbB$ mutant. In a lethality test, BALB/c mice injected intraperitoneally with the Salmonella ${\Delta}msbB$ mutant survived for 7 days, whereas mice injected intraperitoneally with the wild type survived for 3 days. Moreover, all mice inoculated orally with the ${\Delta}msbB$ mutant survived for 30 days, but 80% of mice inoculated orally with the wild type survived. The OmpA::CPV VP2 epitope fusion protein was expressed successfully and associated with the outer membrane and OMV fractions from the mutant S. Typhimurium transformed with the fusion protein-expressing vector. In immunogenicity tests, sera obtained from the mice immunized with either the Salmonella msbB mutant or its OMVs containing the OmpA::CPV VP2 epitope showed bactericidal activities against wild-type S. Typhimurium and contained specific antibodies to the CPV VP2 epitope. In the hemagglutination inhibition (HI) assay as a measurement of CPV-neutralizing activity in the immune sera, there was an 8-fold increase of HI titer in the OMV-immunized group compared with the control. These results suggested that the CPV-neutralizing antibody response was raised by immunization with OMV containing the OmpA::CPV VP2 epitope, as well as the protective immune response against S. Typhimurium in BALB/c mice.

Keywords

References

  1. Alaniz, R. C., B. L. Deatherage, J. C. Lara, and B. T. Cookson. 2007. Membrane vesicles are immunogenic facsimiles of Salmonella Typhimurium that potently activate dendritic cells, prime B and T cell responses, and stimulate protective immunity in vivo. J. Immunol. 179: 7692-7701
  2. Beveridge, T. J. 1999. Structures of Gram-negative cell walls and their derived membrane vesicles. J. Bacteriol. 181: 4725-4733
  3. Borrow, R., I. S. Aaberge, G. F. Santos, T. L. Endey, P. Oster, A. Glennie, et al. 2005. Interlaboratory standardization of the measurement of serum bactericidal activity by using human complement against meningococcal serogroup b, strain 44/76-SL, before and after vaccination with the Norwegian MenBvac outer membrane vesicle vaccine. Clin. Diagn. Lab. Immunol. 12: 970-976
  4. C$\acute{a}$rdenas, L. and J. D. Clements. 1992. Oral immunization using live attenuated Salmonella spp. as carriers of foreign antigens. Clin. Microbiol. Rev. 5: 328-342
  5. Datsenko, K. A. and B. L. Wanner. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. U.S.A. 97: 6640-6645 https://doi.org/10.1073/pnas.120163297
  6. Guzman, L., D. Belin, M. Carson, and J. Beckwith. 1995. Tight regulation, modulation, and high-level expression by vectors containing the arabinose $P_{BAD}$ promoter. J. Bacteriol. 177:4121-4130
  7. Henry, T., St$\acute{e}$phanie. Pommier, L. Journet, A. Bernadac, J. P. Gorvel, and R. Lloub$\grave{e}$s. 2004. Improved methods for producing outer membrane vesicles in Gram-negative bacteria. Res. Microbiol. 155: 437-446 https://doi.org/10.1016/j.resmic.2004.04.007
  8. Hitchcock, P. J. and T. M. Brown. 1983. Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J. Bacteriol. 154: 269-277
  9. Kadurugamuwa, J. L. and T. J. Beveridge. 1997. Natural release of virulence factors in membrane vesicles by Pseudomonas aeruginosa and the effect of aminoglycoside antibiotics on their release. J. Antimicrob. Chemother. 40: 615-621 https://doi.org/10.1093/jac/40.5.615
  10. Kuehn, M. J. and N. C. Kesty. 2005. Bacterial outer membrane vesicles and the host pathogen interaction. Genes Dev. 19:2645-2655 https://doi.org/10.1101/gad.1299905
  11. Liu, T., R. K$\ddot{o}$nig, J. Sha, S. L. Agar, C. T. Tseng, G. R. Klimpel, and A. K. Chopra. 2008. Immunological responses against Salmonella enterica serovar Typhimurium Braun lipoprotein and lipid A mutant strains in Swiss-Webster mice: Potential use as live-attenuated vaccines. Microb. Pathog. 44:224-237 https://doi.org/10.1016/j.micpath.2007.09.005
  12. Low, K. B., M. Ittensohn, T. Le, J. Platt, S. Sodi, M. Amoss, et al. 1999. Lipid A mutant Salmonella with suppressed virulence and TNF-alpha induction retain tumor-targeting in vivo. Nat. Biotechnol. 17: 37-41 https://doi.org/10.1038/5205
  13. Martin, D., L. McCallum, A. Glennie, N. Ruijne, P. Blatchford, J. O'Hallahan, and P. Oster. 2005. Validation of the serum bactericidal assay for measurement of functional antibodies against group B meningococci associated with vaccine trials. Vaccine 23: 2218-2221 https://doi.org/10.1016/j.vaccine.2005.01.070
  14. Mastroeni, P., J. A. Chabalgoity, S. J. Dunstan, D. J. Maskell, and G. Dougan. 2001. Salmonella: Immune responses and vaccines. Vet. J. 161: 132-164 https://doi.org/10.1053/tvjl.2000.0502
  15. Mo, E., S. E. Peters, C. Willers, D. J. Maskell, and I. G. Charles. 2006. Single, double and triple mutants of Salmonella enterica serovar Typhimurium degP (htrA), degQ (hhoA) and degS (hhoB) have diverse phenotypes on exposure to elevated temperature and their growth in vivo is attenuated to different extents. Microb. Pathog. 41: 174-182 https://doi.org/10.1016/j.micpath.2006.07.004
  16. Park, J. S., B. K. Choi, L. S. Vijayachandran, V. Ayyappan, C. K. Chong, K. S. Lee, S. C. Kim, and C. W. Choi. 2007. Immunodetection of canine parvovirus (CPV) in clinical samples by polyclonal antisera against CPV-VP2 protein expressed in Escherichia coli as an antigen. J. Virol. Methods 146: 281-287 https://doi.org/10.1016/j.jviromet.2007.07.021
  17. Patial, S., V. K. Chaturvedi, A. Rai, M. Saini, R. Chandra, Y. Saini, and P. K. Gupta. 2007. Virus neutralizing antibody response in mice and dogs with a bicistronic DNA vaccine encoding rabies virus glycoprotein and canine parvovirus VP2. Vaccine 25: 4020-4028 https://doi.org/10.1016/j.vaccine.2007.02.051
  18. Pratelli, A., A. Cavalli, V. Martella, M. Tempesta, N. Decaro, L. E. Carmichael, and C. Buonavoglia. 2001. Canine parvovirus (CPV) vaccination: Comparison of neutralizing antibody responses in pups after inoculation with CPV2 or CPV2b modified live virus vaccine. Clin. Diagn. Lab. Immunol. 8: 612-615
  19. Schorr, J., B. Knapp, E. Hundt, H. A. Kupper, and E. Amann. 1991. Surface expression of malarial antigens in Salmonella Typhimurium: Induction of serum antibody response upon oral vaccination of mice. Vaccine 9: 675-681 https://doi.org/10.1016/0264-410X(91)90194-B
  20. Serra-Moreno, R., S. Acosta, J. P. Hernalsteens, J. Jofre, and M. Muniesa. 2006. Use of the lambda Red recombinase system to produce recombinant prophages carrying antibiotic resistance genes. BMC Mol. Biol. 7: 1-12 https://doi.org/10.1186/1471-2199-7-1
  21. Smith, A. E., S. H. Kim, F. Liu, W. Jia, E. Vinogradov, C. L. Gyles, and R. E. Bishop. 2008. PagP activation in the outer membrane triggers R3 core oligosaccharide truncation in the cytoplasm of Escherichia coli O157:H7. J. Biol. Chem. 283:4332-4343
  22. Vogel, H. and F. J$\ddot{a}$hnig. 1986. Models for the structure of outermembrane proteins of Escherichia coli derived from Raman spectroscopy and prediction methods. J. Mol. Biol. 190: 191-199 https://doi.org/10.1016/0022-2836(86)90292-5
  23. Wang, L., J. A. Huang, H. S. Nagesha, S. C. Smith, A. Phelps, I. Holmes, J. C. Martyn, P. J. Coloe, and P. R. Reeves. 1999. Bacterial expression of the major antigenic regions of porcine rotavirus VP7 induces a neutralizing immune response in mice. Vaccine 17: 2636-2645 https://doi.org/10.1016/S0264-410X(99)00045-6
  24. Zhou, Z., S. Lin, R. J. Cotter, and C. R. Raetz. 1999. Lipid A modifications characteristic of Salmonella typhimurium are induced by $NH_4VO_3$ in Escherichia coli K12. J. Biol. Chem. 274: 18503-18514 https://doi.org/10.1074/jbc.274.26.18503

Cited by

  1. Biological Functions and Biogenesis of Secreted Bacterial Outer Membrane Vesicles vol.64, pp.None, 2009, https://doi.org/10.1146/annurev.micro.091208.073413
  2. Engineering the perfect (bacterial) cancer therapy vol.10, pp.11, 2009, https://doi.org/10.1038/nrc2934
  3. Bacterial outer membrane vesicles in disease and preventive medicine vol.33, pp.5, 2011, https://doi.org/10.1007/s00281-010-0231-y
  4. Induced fusion and aggregation of bacterial outer membrane vesicles: Experimental and theoretical analysis vol.578, pp.None, 2009, https://doi.org/10.1016/j.jcis.2020.04.068