• Title/Summary/Keyword: Membrane theory

Search Result 193, Processing Time 0.032 seconds

Fatigue Strength Assessment of a Ship Structures using the Influence Coefficient Concept and Spectral Analysis Technique (영향계수법과 스펙트럼 해석법을 이용한 선체의 피로강도평가)

  • Nho, I.S.;Kim, J.K.;Yoon, J.H.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.2
    • /
    • pp.75-84
    • /
    • 1997
  • The up-to-date fatigue strength assessment system for ship structures was developed based on the spectral analysis method and numerical calculation for a membrane type LNG carrier was carried out to verify the effectiveness of the developed system. The wave induced loads acting on the ship's hull were calculated based on strip theory. And introducing the concept of influence factor and 3-D fine mesh structural analysis, direct calculation of long-term distribution of wave induced stress components was realized. Using the derived long term distribution of stress components and Miner-Parmgren's linear damage accumulation rule, fatigue strength of structural components were investigated.

  • PDF

Free-Volume Theory for Diffusion (자유 부피 확산 이론)

  • 홍성욱
    • Membrane Journal
    • /
    • v.8 no.1
    • /
    • pp.1-10
    • /
    • 1998
  • 액체 상태에서 물질이 확산되는 현상을 자유 부피의 개념으로 해석하고자 하는 노력은 1959년에 Cohen과 Turnbull에 의해서 시작되었다. 그들은 액체의 부피를 두 부분으로 나누었는데, 하나는 분자가 차지하고 있는 점유 부피(Occupied volume)이고, 다른 하나는 자유 부피(Free-volume)로서 무작정한 열적 유동에 의해서 재분배된다. 온도의 변화에 의해 부피가 변하는 것은 이 자유 부피의 변화때문이며, 점유 부피는 온도에는 무관함 것으로 갖주하였다. 분자가 액체 상태에서 이동하려면 이웃에 충분한 크기의 자유 부피 공간이 존재해야한다. 따라서, 분자의 확산은 분자가 이들 자유 부피 공간들로 도약하는 것이다. Cohen-Turnbull의 이론에서는 순수한 액체의 자기 확산 계수(Self-diffusion conefficient)는 자유 부피의 무작정한 유동에 의하여 임계 크기의 공간이 생성되는 확률과 관련이 있다. Cohen-Turnbull 자유 부피 이론은 그 후 많은 사람들에 의해서 수정되었고, 그중에서 현재 가장 널리 사용되는 것은 Fujita의 이론과 Vrentas-Duda의 이론이다. 두 이론 모두 확산 데이터를 correlation하는데는 문제가 없으나, Vrentas-Duda의 이론만이 확산계수를 예측할 수 있는 능력이 있다. 또한, 고분자와 용매의 도약 단위의 몰 질량이 같을때에 Vrentas-Duda의 이론은 Fujita의 이론과 같아지므로, Fujita의 이론은 Vrentas-Duda의 이론의 특수한 경우라고 할 수 있다. 따라서, 본 논문에서는 Vrentas-Duda 자유 부피 이론만을 다루기로 하겠다.

  • PDF

Plane Strain Analysis of Sheet Metal with Arbitrary Forming Conditions (임의의 성형조건을 갖는 박판의 평면변형율 해석)

  • Keum, Y.T.;Lee, S.Y.;Wagoner, R.H.
    • Transactions of Materials Processing
    • /
    • v.1 no.1
    • /
    • pp.95-103
    • /
    • 1992
  • The plane strain analysis for simulating the stretch/draw forming operation with an arbitrarily-shaped tool profile is introduced. An implicit, incremental, updated Lagrangian formulation with a rigid-viscoplastic constitutive equation is employed. Contact and friction are considered through the mesh-normal, which compatibly describes arbitrary tool surfaces and FEM meshes without depending on the explicit spatial derivatives of tool surfaces. The linear line elements are used for depicting the formed sheet, based on membrane approximation. The FEM formulation is tested in the sections of automotive inner panel and two-side draw-in. Not only the excellent agreement between measured and computed strains is obtained in the stretched section, but also the numerical stability of formulation is verified in the draw-in section.

  • PDF

Simple Analysis for Interaction between Nanoparticles and Dye-Containing Vesicles as a Biomimetic Cell-Membrane

  • Shin, Sohyang;Umh, Ha Nee;Kim, Younghun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.231-236
    • /
    • 2013
  • Some cytotoxicity studies for the interpretation of the interaction between nanoparticles and cells are non-mechanistic and time-consuming. Therefore, non-biological screening methods, which are faster and simpler than in-vivo and in-vitro methods, are required as alternatives to current cytotoxicity tests. Here, we proposed a simple screening method for the analysis of the interaction between several AgNPs (bare-, citrate-, and polyvinylpyrrolidone-coating) and dye-containing vesicles acting as a biomimetic cell-membrane. The interaction between AgNPs and vesicles could be evaluated readily by UV-vis spectra. Absorbance deviation in UV-vis spectra revealed a large attraction between neighboring particles and vesicles. This was confirmed by (Derjagin, Landau, Verwey, and Overbeek) theory and DMF (dark-field microscopy) analysis. This proposed method might be useful for analyzing the cytotoxicity of nanoparticles with cell-membranes instead of in vitro or in vivo cytotoxicity tests.

The Finite element with Normal Rotational Degree Freedoms (유한요소의 Normal rotation 연구)

  • Cho, Soon-Bo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.4 s.14
    • /
    • pp.85-89
    • /
    • 2004
  • A frame element embedded normal to a shear wall or slab (shell element) is common in the structural systems. In that case there is a need for a membrane or shell element to have a normal rotation degree of freedom at each node in order to have a good result of stresses. Even if Many other people studied this area, All man, Cook and Sabir are representative investigators in this area. In this research paper, Sabir's methods of vertex rotation stiffness matrix in a membrane element are studied. New stiffness of vertex rotation are proposed by taking advantage of beam stiffness theory. Rectangular elements stiffness with rotational degree of freedom are compared in accuracy ratio each other.

  • PDF

THERMALLY INDUCED PHASE SEPARATION IN TERNARY POLYMER SOLUTION

  • Jung, Bum-Suk;Kang, Yong-Soo;Jones, Richard-A.L.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.79-82
    • /
    • 1999
  • Using Small Angle Light Scattering (SALS), the effect of quench depth on the kinetics of phase separation for ternary solution blends was investigated. The system was composed of two polymers (polystyrene and polybutadiene) and a solvent (toluene). The analyses of the early stage of phase separation were based of the Cahn-Hilliard theory [1,5]. Apparent diffusion coefficients and the fastest mode of fluctuations were evaluated, when quench depth of the system were varied near the critical composition of polymer. In the late stage of phase separation, the domain growth showed a power law with the 1/3 exponent, i.e. $q_m(t)~t^{-1/3}$. For comparison between real images and scattering profiles with time, the image of phase domains with time were obtained by using Laser Confocal Scanning Microscopy (LSCM).

  • PDF

Evaluation of Membrane Damage Sensitivity by Defect Types for Improving Reliability of Membrane Integrity Monitoring (막 완결성 모니터링 신뢰성 향상을 위한 손상 유형별 막 손상 감도 평가)

  • Lee, Yong-Soo;Kang, Ha-Young;Kim, Hyung-Soo;Kim, Jong-Oh
    • Membrane Journal
    • /
    • v.27 no.3
    • /
    • pp.248-254
    • /
    • 2017
  • In order to secure the reliability of pathogenic microorganisms such as Cryptosporidium and Giaridia, which are chlorophilic protozoans, membrane filtration systems have been widely used in water purification process. hese integrity tests are classified into direct and indirect methods. Based on the bubble point theory, the pressure-based test in the direct method is presented in the USEPA Guidance Manual with sensitivity to detect a minimum size of pathogenic microorganisms of $3{\mu}m$ or more. Indirect methods are widely used in that they are capable of continuous operation in on-line state, but there is a very low sensitivity of damage detection compared to the direct method, and there is a limit that can not specify the damage area, so it is necessary to improve this sensitivity. In this study, we compared the LRVDIT and UCL values according to the type of membrane defect, number of fiber breaks, and initial set pressure value through the Integrity Test by Pressure Decay Test (PDT).

Wave propagation in a generalized thermo elastic plate embedded in elastic medium

  • Ponnusamy, P.;Selvamani, R.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.1
    • /
    • pp.13-26
    • /
    • 2012
  • In this paper, the wave propagation in a generalized thermo elastic plate embedded in an elastic medium (Winkler model) is studied based on the Lord-Schulman (LS) and Green-Lindsay (GL) generalized two dimensional theory of thermo elasticity. Two displacement potential functions are introduced to uncouple the equations of motion. The frequency equations that include the interaction between the plate and foundation are obtained by the traction free boundary conditions using the Bessel function solutions. The numerical calculations are carried out for the material Zinc and the computed non-dimensional frequency and attenuation coefficient are plotted as the dispersion curves for the plate with thermally insulated and isothermal boundaries. The wave characteristics are found to be more stable and realistic in the presence of thermal relaxation times and the foundation parameter. A comparison of the results for the case with no thermal effects shows well agreement with those by the membrane theory.

Design and fabrication of micro force sensor using MEMS fabrication technology (MEMS 제작기술을 이용한 미세 힘센서 설계 및 제작)

  • 김종호;조운기;박연규;강대임
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.497-502
    • /
    • 2002
  • This paper describes a design methodology of a tri-axial silicon-based farce sensor with square membrane by using micromachining technology (MEMS). The sensor has a maximum farce range of 5 N and a minimum force range of 0.1N in the three-axis directions. A simple beam theory was adopted to design the shape of the micro-force sensor. Also the optimal positions of piezoresistors were determined by the strain distribution obtained from the commercial finite element analysis program, ANSYS. The Wheatstone bridge circuits were designed to consider the sensitivity of the force sensor and its temperature compensation. Finally the process for microfabrication was designed using micromachining technology.

  • PDF

A Simple Mixed-Based Approach for Thin-Walled Composite Blades with Two-Cell Sections

  • Jung Sung Nam;Park Il-Ju
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.2016-2024
    • /
    • 2005
  • In this work, a mixed beam approach that combines both the stiffness and the flexibility methods has been performed to analyze the coupled composite blades with closed, two-cell cross-sections. The Reissner's semi-complementary energy functional is used to derive the beam force-displacement relations. Only the membrane part of the shell wall is taken into account to make the analysis simple and also to deliver a clear picture of the mixed method. All the cross section stiffness coefficients as well as the distribution of shear across the section are evaluated in a closed-form through the beam formulation. The theory is validated against experimental test data, detailed finite element analysis results, and other analytical results for coupled composite blades with a two-cell airfoil section. Despite the simple kinematic model adopted in the theory, an accuracy comparable to that of two-dimensional finite element analysis has been obtained for cases considered in this study.