• 제목/요약/키워드: Membrane stiffness

검색결과 105건 처리시간 0.021초

풀러렌이 혼입된 나피온기반 나노복합체 작동기의 성능평가 (Performance Test of Nano-Composite Actuator Based on Fullerene Mixed Nafion)

  • 정정환;오일권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.374-375
    • /
    • 2008
  • In this study, the nano-composite actuator based on Fullerene and Nafion was newly developed to improve the electro active polymer actuators. The tensile test was employed to define the mechanical stiffness and strength of the nano-composite membrane. Also, the bending displacement of the Fullerene-Nafion based nano-composite actuator was investigated under DC and AC excitations with various magnitudes and frequencies. As a result, the new nano-composite actuator based on Fullerene-Nafion shows much larger deformation than the pure Nafion based actuator and solves the straightening back Problem of the previous electro active polymer actuators.

  • PDF

측두하악관절의 소성체를 동반한 활액성 연골종증 : 증례보고 (Articular loose body, Synovial Chondromatosis of the Temporomandibular Joint : a Case Report)

  • 최병준;이백수;김여갑;권용대;김영란
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제35권5호
    • /
    • pp.310-311
    • /
    • 2009
  • Synovial chondromatosis is an uncommon disease of cartilage transformation of synovial membrane with formation of loose bodies within the joint space. The involvement of temporomandibular joint is very rare. Symtoms include swelling, pain, stiffness of the jaw, and inability to close the jaw. A case involving the temporomandibular joint(TMJ) and non-symptoms is presented.

An 8-node assumed strain element with explicit integration for isotropic and laminated composite shells

  • Kim, K.D.;Park, T.H.
    • Structural Engineering and Mechanics
    • /
    • 제13권4호
    • /
    • pp.387-410
    • /
    • 2002
  • Formulation of an 8 nodes assumed strain shell element is presented for the analysis of shells. The stiffness matrix based on the Mindlin-Reissner theory is analytically integrated through the thickness. The element is free of membrane and shear locking behavior by using the assumed strain method such that the element performs very well in modeling of thin shell structures. The material is assumed to be isotropic and laminated composite. The element has six degrees of freedom per node and can model the stiffened plates and shells. A great number of numerical testing carried out for the validation of present 8 node shell element are in good agreement with references.

Geometrically nonlinear analysis of laminated composites by an improved degenerated shell element

  • Yoo, Seung-Woon;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • 제9권1호
    • /
    • pp.99-110
    • /
    • 2000
  • The objective of this paper is to extend the use of the improved degenerated shell element to the linear and the large displacement analysis of plates and shells with laminated composites. In the formulation of the element stiffness, the combined use of three different techniques was made. This element is free of serious shear/membrane locking problems and undesirable compatible/commutable spurious kinematic deformation modes. The total Lagrangian approach has been utilized for the definition of the deformation and the solution to the nonlinear equilibrium equations is obtained by the Newton-Raphson method. The applicability and accuracy of this improved degenerated shell element in the analysis of laminated composite plates and shells are demonstrated by solving several numerical examples.

보강된 구조물의 기하학적 비선형 해석을 위한 편심 응축 셸 요소 (An Eccentric Degenerated Shell Element for the Geometrically Nonlinear Analysis of Stiffened Structures)

  • 이원재;이병채
    • 대한기계학회논문집A
    • /
    • 제24권7호
    • /
    • pp.1721-1730
    • /
    • 2000
  • An eccentric degenerated shell element with geometric non-linearity for the precise and efficient analysis of stiffened shell structures is developed. To deal with the eccentricity, we define the e ccentric shell and the master shell that constitute one combined shell. It is assumed that the sections remain plane after deformation. The internal force vector and the tangent stiffness matrix based on the virtual work principle in the natural coordinate system are derived. To enhance the robustness of the element, assumed strain method for transverse shear and membrane strains is used. Through numerical experiments the effectiveness of the proposed element is demonstrated.

반복하중을 받는 철근콘크리트 판넬의 비선형 해석 (Nonlinear Analysis of RC Panels under Cyclic Loadings)

  • 곽효경;김도연
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 가을 학술발표회논문집
    • /
    • pp.182-189
    • /
    • 2000
  • This paper presents a simple and reliable constitutive model for predicting the nonlinear response of reinforced concrete subjected to general membrane loadings. Based on the concept of equivalent uniaxial strain, constitutive relations of concrete are presented in the axes of orthotropy. The behavior of cracked concrete is described by a system of orthogonal cracks, which follows the principal strain directions and rotates according to the loading history. Simple hysteretic rules defining the cyclic stress-strain curves of concrete and steel are used. In addition, the stiffness and strength degradation of cracked concrete is included in the formulation. Correlation studies between analytical results and experimental values from idealized shear panel tests are conducted with the objective to establish the validity of the proposed model.

  • PDF

A method for predicting approximate lateral deflections in thin glass plates

  • Xenidis, H.;Morfidis, K.;Papadopoulos, P.G.
    • Structural Engineering and Mechanics
    • /
    • 제53권1호
    • /
    • pp.131-146
    • /
    • 2015
  • In the present paper a three-dimensional non-linear truss element and a short computer program for the modeling and predicting approximate lateral deflections in thin glass plates by the method of incremental loading are proposed. Due to the out-of-plane large deflections of thin glass plates compared to the plate thickness within each loading increment, the equilibrium and stiffness conditions are written with respect to the deformed structure. An application is presented on a thin fully tempered monolithic rectangular glass plate, laterally supported around its perimeter subjected to uniform wind pressure. The results of the analysis are compared with published experimental results and found to have satisfactory approximation. It is also observed that the large deflections of a glass plate lead to a part substitution of the bending plate behavior by a tensioned membrane behavior which is favorable.

NVH 성능향상을 위한 복곡 자동차 패널의 효과 (Effect of the Curved Automotive Panels for NVH Performance Improvement)

  • 유희;이영우;최병기;김종국;염영진
    • 대한기계학회논문집A
    • /
    • 제33권7호
    • /
    • pp.700-705
    • /
    • 2009
  • In order to enhance the dynamic stiffness of automotive panel, effect of bead and curved surface was investigated. Modal test was performed for principle specimens which have various kinds of beads, holes and curved surfaces. Test was also performed for conventional dash panel assembly and rear floor panel assembly and curved shaped ones. Results showed that curved shape increased the natural frequency of automotive panel more effectively than the bead. Finite element analysis was also performed and yielded good match with the test results.

Equilibrium shape analysis of single layer structure by measure potential function

  • Ijima, Katsushi;Xi, Wei;Goto, Shigeo
    • Structural Engineering and Mechanics
    • /
    • 제5권6호
    • /
    • pp.775-784
    • /
    • 1997
  • A unified theory is presented for the shape analysis of curved surface with a single layer structure composed by frame, membrane or shell. The shapes produced by the theory have no shear stress in elements, and the stress states in the whole shape are as uniform as possible under an ordinary load. The theory starts from defining an element potential function expressed by the measurement of the element length or the element area. Therefore, the shape analysis can produce various forms according to the definition of the potential function, and each of those form or the cable net form with the potential function of the second power of element length is simply gotten by the linear analysis. The form in tensile stress is mechanically equal to an isotropic tension form.

3절점 혼합유한요소를 이용한 아치의 면내굽힘진동해석 (In-Plane Flexural Vibration Analysis of Arches Using Three-Noded Hybrid-Mixed Element)

  • 김진곤
    • 동력기계공학회지
    • /
    • 제10권4호
    • /
    • pp.83-89
    • /
    • 2006
  • Curved beams are more efficient in transfer of loads than straight beams because the transfer is effected by bending, shear and membrane action. The finite element method is a versatile method for solving structural mechanics problems and curved beam problems have been solved using this method by many author. In this study, a new three-noded hybrid-mixed curved beam element is proposed to investigate the in-plane flexural vibration behavior of arches depending on the curvature, aspect ratio and boundary conditions, etc. The proposed element including the effect of shear deformation is based on the Hellinger-Reissner variational principle, and employs the quadratic displacement functions and consistent linear stress functions. The stress parameters are then eliminated from the stationary condition of the variational principle so that the standard stiffness equations are obtained. Several numerical examples confirm the accuracy of the proposed finite element and also show the dynamic behavior of arches with various shapes.

  • PDF