• Title/Summary/Keyword: Membrane sensor

Search Result 356, Processing Time 0.03 seconds

Novel Silver(I) Ion Selective PVC Membrane Electrode Based on the Schiff Base (N2E,N2'E)-N2,N2'-Bis(Thiophen-2-ylmethylene)-1,1'-Binaphthyl-2,2'-Diamine

  • Jeong, Eunseon;Ahmed, Mohammad Shamsuddin;Jeong, Hae-Sang;Lee, Eun-Hee;Jeon, Seung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.800-804
    • /
    • 2011
  • A potentiometric sensor based on the Schiff base $(N^2E,N^{2'}E)-N^2,N^{2'}$-bis(thiophen-2-ylmethylene)-1,1'-binaphthl-2,2'-diamine has been synthesized and explored as an ionophore PVC-based membrane sensor selective for the silver ($Ag^+$) ion. Potentiometric investigations indicate a high affinity of this receptor for the silver ion. Seven membranes have been fabricated with different compositions, with the best performance shown by the membrane with an ionophore composition (w/w) of: 1.0 mg, PVC: 33.0 mg, DOA: 66.0 mg in 1.0 mL THF. The sensor worked well within a wide concentration range of $1.0{\times}10^{-2}$ to $1.0{\times}10^{-7}$ M, at pH 5, at room temperature (slope 57.4 mV/dec.), and with a rapid response time of 9 s; the sensor also showed good selectivity towards the silver ion over a huge number of interfering cations, with the highest selectivity coefficient for $Hg^{2+}$ at -3.7. Thus far, the best lower detection limit was $4.0{\times}10^{-8}$ M.

Mixed Bacillus sp. BOD sensor (혼합 Bacillus sp. BOD 센서)

  • Kang, Tae Young;Park, Hyun Joo;Park, Kyeong Ryang;Kim, Jin Doo;Cha, Geun Sig;Nam, Hakhyun
    • Analytical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • The BOD (biochemical oxygen demand) sensor was fabricated by covering a dissolved oxygen (DO) probe with a microbe-impregnated membrane and a dialysis membrane. Various microorganisms isolated from the soils, water and activated sludge have been evaluated for measuring biochemical oxygen demand (BOD); Bacillus species HN24 and HN93 were selected as they exhibited rapid oxygen consumption and fast recovery. Improved BOD sensor could be prepared by using mixed microbes (Bacillus subtilis, Bacillus sp. HN24 and Bacillus sp. NH93) and silicon rubber gas-permeable membrane for DO probe, and by bubbling 50% $O_2$ ($N_2$ valence) through background buffer solution. This system exhibited excellent analytical performance resulting in good linearity ($r^2=0.9986$) from 0 to 100 mg/L level of BOD.

Experimental Study of Impact Behaviors of the Membrane for LNG Storage Tank (LNG 저장탱크용 멤브레인의 충격거동에 관한 실험적 연구)

  • Kim, Young-Gyu;Kim, Chung-Kyun
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.4
    • /
    • pp.68-74
    • /
    • 1995
  • This paper analyzes the behaviors of the membrane under drop impact loadings using the acoustic emission technique. The analysis is useful for evaluating the strength of the membrane as well as for studying its damping characterisics due to the corrugation and the ring knot. The membrane for LNG storage tank is basically composed linear and circular elements. Two membrane specimens have approximately same drop impact mass and same drop speed. Locan 320 system with piezoelectric sensor is used in the experimental measurement. Experimental results for the membranes indicated that AE siganls having higher energies were generated with increasing drop impact loadings. It was confirmed that the ring knot. membrane has high absorption of drop impact loadings in comparison with the flat membrane. These results are very important to reliable design and to improve the safey of the membrane components.

  • PDF

Highly Selective Triiodide Polymeric Membrane Electrode Based on Tetra(p-chlorophenyl)porphyrinato Manganese (Ⅲ) Acetate

  • Farhadi, Khalil;Shaikhlouei, Hossain;Maleki, Ramin;Sharghi, Hashem;Shamsipur, Mojtaba
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.11
    • /
    • pp.1635-1639
    • /
    • 2002
  • A new solvent polymeric membrane sensor based on tetra(p-chlorophenyl)porphyrinato manganese (III) acetate is described which demonstrates excellent selectivity toward the triiodide ion. The electrode has a linear dynamic range between 1.0 ${\times}$ $10^{-2}$ M and 7.0 ${\times}$$10^{-6}$M with a Nernstian slope of $-59.6{\pm}1$ mV per decade and a detection limit of 5.0 ${\times}$$10^{-6}$M. The proposed sensor revealed good selectivities for triiodide over a wide variety of other anions and could be used in a pH range 2-9. The electrode can be used for at least two months without any considerable divergence in potential. It was applied as indicator electrode in potentiometric titration of the triiodide and As(III) ions.

Dependence of Electrical Resistance in Porous Silicon Layer for Detecting Organic Vapors (유기 가스 검지를 위한 다공질 실리콘층의 전기 저항 의존성)

  • Park, Kwang-Yeol;Kim, Seong-Jeen;Lee, Sang-Hoon;Choi, Bok-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.792-796
    • /
    • 2002
  • In this work, porous silicon(PS) layer is used as a sensing material to detect organic gases. To do this, PS sensors with membrane structure are fabricated. The sensors were made by applying the technologies of membrane formation by anisotropic etching of silicon, and PS layer formation by anodization in HF solution. From fabricated sensors, current-voltage (I-V) curves were measured against ethanol (called alcohol), methanol and acetone gases evaporated from 0.1 to 0.5% solution concentrations at $36^{\circ}C$. As the result, all curves showed rectifying behavior due to a diode structure between Si and PS, and the conductance of sensor devices increased largely with the organic solution concentration at high voltage of 5V.

  • PDF

Fundamental Study of Unit Proton Exchange Membrane Electrolysis for Realtime Detection of Tritium (실시간 삼중수소 검출을 위한 단위 양성자 교환 막 전기분해 기초연구)

  • CHAE, JONGMIN;YU, SANGSEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.2
    • /
    • pp.226-234
    • /
    • 2018
  • Even though the nuclear power plants has many advantages, safety issues of nuclear power plants are crucial factors of reliable operation. A tritium detector is a useful sensor to analyze amount of exposed radiation from the nuclear power plants. Currently, concentration of underwater tritium is measured precisely but it takes very long time. Since electrolysis is extracted hydrogen from the coolant of nuclear power plant, it can motivate to develop new type of real-time sensor. In this study, Proton Exchange Membrane (PEM) electrolyzer is studied for candidate as preprocessor of real-time tritium detector. Characteristics of the unit PEM electrolyzer were experimentally investigated. A simulation model is developed to understand physical behavior of unit PEM electrolyzer under dynamic operation.

Modeling and Analysis of a Multi Bossed Beam Membrane Sensor for Environmental Applications

  • Arjunan, Nallathambi;Thangavelu, Shanmuganantham
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.1
    • /
    • pp.25-29
    • /
    • 2017
  • This paper presents a unique pressure sensor design for environmental applications. The design uses a new geometry for a multi bossed beam-membrane structure with a SOI (silicon-on-insulator) substrate and a mechanical transducer. The Intellisuite MEMS CAD design tool was used to build and analyze the structure with FEM (finite element modeling). The working principle of the multi bossed beam structure is explained. FEM calculations show that a sensing diaphragm with Mises stress can provide superior linear response compared to a stress-free diaphragm. These simulation results are validated by comparing the estimated deflection response. The results show that, the sensitivity is enhanced by using both the novel geometry and the SOI substrate.

Soft Sensor Development for Predicting the Relative Humidity of a Membrane Humidifier for PEM Fuel Cells (고분자 전해질 연료전지용 막가습기의 상대습도 추정을 위한 소프트센서 개발)

  • Han, In Su;Shin, Hyun Khil
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.5
    • /
    • pp.491-499
    • /
    • 2014
  • It is important to accurately measure and control the relative humidity of humidified gas entering a PEM (polymer electrolyte membrane) fuel cell stack because the level of humidification strongly affects the performance and durability of the stack. Humidity measurement devices can be used to directly measure the relative humidity, but they cost much to be equipped and occupy spaces in a fuel cell system. We present soft sensors for predicting the relative humidity without actual humidity measuring devices. By combining FIR (finite impulse response) model with PLS (partial least square) and SVM (support vector machine) regression models, DPLS (dynamic PLS) and DSVM (dynamic SVM) soft sensors were developed to correctly estimate the relative humidity of humidified gases exiting a planar-type membrane humidifier. The DSVM soft sensor showed a better prediction performance than the DPLS one because it is able to capture nonlinear correlations between the relative humidity and the input data of the soft sensors. Without actual humidity sensors, the soft sensors presented in this work can be used to monitor and control the humidity in operation of PEM fuel cell systems.

Salphen H2 as a Neutral Carrier for the Uranyl Ion-Selective PVC Membrane Sensor

  • Kim, Dong-Wan;Park, Kyeong-Won;Yang, Mi-Hyi;Kim, Jin-eun;Lee, Shim-Sung;Kim, Jae-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.6
    • /
    • pp.899-902
    • /
    • 2006
  • The complexation of N,N'-4,5-(ethylenedioxy)benzenebis(salicylideneimine), (salphen$H_2$) with uranyl ion was studied in acetonitrile solution spectrophtometrically, and the formation constant of the resulting 1 : 1 complex was evaluated. The salphen$H_2$ ligand was used as an ionophore in plasticized poly(vinyl chloride) (PVC) matrix membrane sensor for uranyl ion. The prepared sensors exhibited a near Nernstian response, 28.0-30.9 mV/decade for uranyl ion over the concentration range $1.0\;{\times}\;10^{-2}$ to $1.0\;{\times}\;10^{-6}$M with a limit of detection of $3.2\;{\times}\;10^{-7}$ M. The proposed electrode could be used at a working pH range of 1.5 - 4.0.

Etching-Bonding-Thin film deposition Process for MEMS-IR SENSOR Application (MEMS-IR SENSOR용 식각-접합-박막증착 기반공정)

  • Park, Yun-Kwon;Joo, Byeong-Kwon;Park, Heung-Woo;Park, Jung-Ho;Yom, S.S.;Suh, Sang-Hee;Oh, Myung-Hwan;Kim, Chul-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2501-2503
    • /
    • 1998
  • In this paper, the silicon-nitride membrane structure for IR sensor was fabricated through the etching and the direct bonding. The PTO layer as a IR detection layer was deposited on the membrane and its characteristics were measured. The attack of PTO layer during the etching of silicon wafer as well as the thermal isolation of the IR detection layer can be solved through the method of bonding/etching of silicon wafer. Because the PTO layer of c-axial orientation raised thermal polarization without polling, the more integration capability can be achieved. The surface roughness of the membrane was measured by AFM, the micro voids and the non-contacted area were inspected by IR detector, and the bonding interface was observed by SEM. The polarization characteristics and the dielectric characteristics of the PTO layer were measured, too.

  • PDF