• Title/Summary/Keyword: Membrane sensor

Search Result 356, Processing Time 0.03 seconds

Fabrication and Characterization of a Pressure Sensor using a Pitch-based Carbon Fiber (탄소섬유를 이용한 압력센터 제작 및 특성평가)

  • Park, Chang-Sin;Lee, Dong-Weon;Kang, Bo-Seon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.417-424
    • /
    • 2007
  • This paper reports fabrication and characterization of a pressure sensor using a pitch-based carbon fiber. Pitch-based carbon fibers have been shown to exhibit the piezoresistive effect, in which the electric resistance of the carbon fiber changes under mechanical deformation. The main structure of pressure sensors was built by performing backside etching on a SOI wafer and creating a suspended square membrane on the front side. An AC electric field which causes dielectrophoresis was used for the alignment and deposition of a carbon fiber across the microscale gap between two electrodes on the membrane. The fabricated pressure sensors were tested by applying static pressure to the membrane and measuring the resistance change of the carbon fiber. The resistance change of carbon fibers clearly shows linear response to the applied pressure and the calculated sensitivities of pressure sensors are $0.25{\sim}0.35 and 61.8 ${\Omega}/k{\Omega}{\cdot}bar$ for thicker and thinner membrane, respectively. All these observations demonstrated the possibilities of carbon fiber-based pressure sensors.

Image Analysis of a Lateral Flow Strip Sensor for the Detection of Escherichia coli O157:H7

  • Kim, Giyoung;Moon, Ji-Hea;Park, Saet Byeol;Jang, Youn-Jung;Lim, Jongguk;Mo, Changyeun
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.335-340
    • /
    • 2013
  • Purpose: This study was performed to develop a lateral flow strip sensor for the detection of pathogenic Escherichia coli O157:H7 in various samples. Also, feasibility of using an image analysis method to improve the interpretation of the strip sensor was evaluated. Methods: The lateral flow strip sensor has been fabricated based on nitrocellulose lateral-flow membrane. Colloidal gold and E. coli O157:H7 antibodies were used as a tag and a receptor, respectively. Manually spotted E. coli O157:H7 antibody and anti-mouse antibody on nitrocellulose membrane were used as test and control dots, respectively. Feasibility of the lateral flow strip sensor to detect E. coli O157:H7 were evaluated with serially diluted E. coli O157:H7 cells in PBS or food samples. Test results of the lateral flow strip sensor were measured with an image analysis method. Results: The intensity of the test dot started to increase with higher concentration of the cells were introduced. The sensitivities of the sensor were both $10^4$ CFU/mL Escherichia coli O157:H7 spiked in PBS and in chicken meat extract, respectively. Conclusions: The lateral flow strip sensor and image analysis method could detect E. coli O157:H7 in 20 min, which is significantly quicker than conventional plate counting method.

Design of sensing .element of bio-mimetic tactile sensor for measurement force and temperature (힘과 온도 측정을 위한 생체모방형 촉각센서 감지부 설계)

  • 김종호;이상현;권휴상;박연규;강대임
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1029-1032
    • /
    • 2002
  • This paper describes a design of a tactile sensor, which can measure three components force and temperature due to thermal conductive. The bio-mimetic tactile sensor, alternative to human's finger, is comprised of four micro force sensors and four thermal sensors, and its size being 10mm$\times$10mm. Each micro force sensor has a square membrane, and its force range is 0.1N - 5N in the three-axis directions. On the other hand, the thermal sensor for temperature measurement has a heater and four temperature sensor elements. The thermal sensor is designed to keep the temperature. $36.5^{\circ}C$, constant, like human skin, and measure the temperature $0^{\circ}C$ to $50^{\circ}C$. The MEMS technology is applied to fabricate the sensing element of the tactile sensor.

  • PDF

One-component Room Temperature Vulcanizing-Type Silicone Rubber-Based Solid-State Carbonate Ion Selective Electrode (단일 조성 실온 경화형 실리콘러버를 지지체로 사용한 고체상 탄산이온선택성 전극의 개발)

  • Kim, Mi-Kyoung;Yoon, In-Jun;Cho, Sung-Ho;Shin, Hye-Ra;Han, Jong-Ho;Ha, Jeong-Han;Nam, Hak-Hyun;Cha, Geun-Sig
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.3
    • /
    • pp.266-272
    • /
    • 2004
  • We developed a miniaturized solid-state carbonate ion-selective electrode (carbonate ISE) based on one-component room temperature vulcanizing type silicone rubber 730 (730 RTV) without adding plasticizer to the matrix. The optimized carbonate ion selective membrane is prepared with 85.8 wt% of 730 RTV, 11.1 wt% of trifluoroacetyl-p-decylbenzene (TFADB), and 3.1 wt% of tridodecyl-methylammonium chloride (TDMACl). This carbonate ISE exhibited excellent potentiometric properties (i.e., slope: 26.3 mV/dec; selectivity: $logKT^{pot}_{CO_{2},Cl^-}$= -4.00 and $logKT^{pot}_{TCO_{2},Sal^-}$=1.69); and detection limit for $TCO_2:\;4.0{\times}10^{-4}M$). In addition, the early potentiometric properties of the solid-state sensor with optimized membrane composition were not deteriorated for more than 60 days.

Permeation Characteristics of Poly(Hydroxypropyl Methacrylate) membrane having Tertiary Amine Moiety (Tertiary Amine을 포함하는 Hydroxypropyl Methacrylate 고분자막의 투과특성)

  • Hon, Jae-Min;Shim, Jyong-Sup
    • Applied Chemistry for Engineering
    • /
    • v.1 no.2
    • /
    • pp.154-160
    • /
    • 1990
  • Hydroxypropyl methacrylate polymeric membranes having tertiary amine moiety were prepared to control the release rate of insulin in response to the concentration of glucose. Hydroxypropyl methacrylate was copolymerized with N, N'-diethylaminoethylacrylate. Its water content was increased with decreasing the pH of the medium and was reversible with variation of the pH of the medium. The permeation coefficient of insulin through copolymer membrane was also increased with decreasing the pH of the medium. Combining this copolymer membrane and the glucose oxidase immobilized membrane as a sensor for glucose, composite membrane was prepared. The permeability of this composite membrane was increased with addition of glucose.

  • PDF

A Solid-Contact Indium(III) Sensor based on a Thiosulfinate Ionophore Derived from Omeprazole

  • Abbas, Mohammad Nooredeen;Amer, Hend Samy
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1153-1159
    • /
    • 2013
  • A novel solid-contact indium(III)-selective sensor based on bis-(1H-benzimidazole-5-methoxy-2-[(4-methoxy-3, 5-dimethyl-1-pyridinyl) 2-methyl]) thiosulfinate, known as an omeprazole dimer (OD) and a neutral ionophore, was constructed, and its performance characteristics were evaluated. The sensor was prepared by applying a membrane cocktail containing the ionophore to a graphite rod pre-coated with polyethylene dioxythiophene (PEDOT) conducting polymer as the ion-to-electron transducer. The membrane contained 3.6% OD, 2.3% oleic acid (OA) and 62% dioctyl phthalate (DOP) as the solvent mediator in PVC and produced a good potentiometric response to indium(III) ions with a Nernstian slope of 19.09 mV/decade. The constructed sensor possessed a linear concentration range from $3{\times}10^{-7}$ to $1{\times}10^{-2}$ M and a lower detection limit (LDL) of $1{\times}10^{-7}$ M indium(III) over a pH range of 4.0-7.0. It also displayed a fast response time and good selectivity for indium(III) over several other ions. The sensor can be used for longer than three months without any considerable divergence in potential. The sensor was utilized for direct and flow injection potentiometric (FIP) determination of indium(III) in alloys. The parameters that control the flow injection method were optimized. Indium(III) was quantitatively recovered, and the results agreed with those obtained using atomic absorption spectrophotometry, as confirmed by the f and t values. The sensor was also utilized as an indicator electrode for the potentiometric titration of fluoride in the presence of chloride, bromide, iodide and thiocyanate ions using indium(III) nitrate as the titrant.

Determination of Copper in Black, Red Pepper and the Waste Water Samples by a Highly Selective Sensitive Cu(II) Microelectrode Based on a New Hexadentates Schiff's Base

  • Norouzi, Parviz;Ganjali, Mohammad Reza;Faridbod, Farnoush;Salavati-Niasari, Masoud
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1439-1444
    • /
    • 2006
  • A $Cu^{2+}$ ion-selective membrane microelectrode has been fabricated from poly vinyl chloride (PVC) matrix membrane containing a new symmetrical hexadentate Schiff,s base 2-{1-(E)-2-((Z)-2-{(E)-2-[(Z)-1-(2-hydroxyphenyl)ethylidene]hydrazono}-1-methylpropylidene)hydrazono]ethyl}phenol (HDNOS) as a neutral carrier, Potassium tetrakis(4-chlorophenyl) borate (KTpClPB) as an anionic excluder and o-nitrophenyloctyl ether (NPOE) as a plasticizing solvent mediator. The microelectrode displays linear potential response in the concentration range of $1.0\;{\times}\;10^{-5}-1.0\;{\times}\;10^{-11}$ M of $Cu^{2+}$. The microelectrode exhibits a nice Nernstian slope of 25.9 ${\pm}$ 0.3 mV $decade^{-1}$ in the pH range of 3.1-8.1. The sensor has a relatively short response time in whole concentration ranges ($\sim$5 s). The detection limit of proposed sensor is $5.0\;{\times}\;10^{-12}$ M (320 pg/L), and it can be used over a period of eight weeks. The practical utility of the sensor has been demonstrated by using it as an indicator electrode in the potentiometric titration of $Cu^{2+}$ with EDTA. The proposed membrane electrode was used for the direct determining of $Cu^{2+}$ content in black and red pepper, and in waste water samples.

MEM Temperature and Humidity Network Sensor for Wire and Wireless Network (유무선 통신용 MEMS 온습도 네트워크 센서)

  • Jung, Woo-Chul;Cha, Boo-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.360-361
    • /
    • 2006
  • This paper describes a wire and wireless network sensor for temperature and humidity measurements. The network sensor comprises PLC(Power Line Communication) and RF transmitter(433MHz) for acquiring an internal (on-board) sensor signal, and measured data is transmitted to a main processing unit. The network sensor module is consist of MEMS sensor, 10-bit A/D converter, pre-amp., gain-amp., ADUC812 one chip processor and PLC/RF transmitting unit. The temperature and humidity sensor is based on MEMS piezoelectric membrane structure and is implemented by using dual function sensor for smart home and smart building.

  • PDF

Chromel-Alumel Thermoelectric Flow Sensor Fabricated on Dielectric(Si3N4/SiO2/Si3N4) Membrane (유전체(Si3N4/SiO2/Si3N4)멤브레인 위에 제작된 크로멜-알루멜 열전 유량센서)

  • Lee, Hyung-Ju;Kim, Jin-Sup;Kim, Yeo-Hwan;Lee, Jung-Hee;Choi, Yong-Moon;Park, Se-Il
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.103-111
    • /
    • 2003
  • A chromel-alumel thermoelectric flow sensor using $Si_3N_4/SiO_2/Si_3N_4$ thermal isolation membrane was fabricated. Temperature coefficient of resistance of thin film Pt-heater was about $0.00397/^{\circ}C$, and Seebeck coefficient of chromel-alumel thermocouple was about $36\;{\mu}V/K$. The sensor showed that thermoelectric voltage decreased as thermal conductivity of gas increased, and $N_2$-flow sensitivity increased as heater voltage increased or the distance between heater and thermocouple decreased. When heater voltage was about 2.5 V, $N_2$-flow sensitivity and thermal response time of the sensor were about $1.5\;mV/sccm^{1/2}$ and 0.18 sec., respectively. Linear range in flow sensitivity of the flow sensor was wider than that of Bi-Sb flow sensor.

Novel Tm(III) Membrane Sensor Based on 2,2'-Dianiline Disulfide and Its Application for the Fluoride Monitoring of Mouth Wash Preparations

  • Ganjali, Mohammad Reza;Norouzi, Parviz;Tamaddon, Atefeh;Husain, Syed Waqif
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1418-1422
    • /
    • 2006
  • In this work the construction of a novel poly(vinyl chloride) membrane sensor based on 2,2'-dianiline disulfide (DADS) as a neutral carrier, o-nitrophenyloctyl ether (NPOE) as a plasticizer and sodium tetraphenyl borate (NaTPB) as an anionic site with unique selectivity towards Tm(III) ions is reported. The electrode has a linear dynamic range between $1.0\;{\times}\;10^{-6}$ and $1.0\;{\times}\;10^{-2}$ M, with a nice Nernstian slope of 19.5 ${\pm}$ 0.3 mV per decade and a detection limit of $4.0\;{\times}\;10^{-7}$ M at the pH range of 4.8-8.5. It has a very fast response time (<15 s) in the whole concentration range, and can be used for at least 4 weeks without any considerable divergence in the electrode potentials. The proposed sensor revealed comparatively good selectivity with respect to most common metal ions, and especially lanthanide ions. It was used as an indicator electrode in the potentiometric titration of Tm(III) ions with EDTA and in direct determination of concentration of Tm(III) ions in binary mixtures. It was also applied in determination of fluoride ions in mouth wash preparations.